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SUMMARY

The brain’s complexity enables its remarkable functions, yet this very complexity

makes it hard to understand. Current methodologies for recording brain activity

often provide narrow views of the brain’s function, limited by the constraints of

current recording technology and the structured nature of the standard neuroscience

experiment. This fragmentation of datasets has hampered the development of robust

and comprehensive computational models of brain function that generalize across

diverse conditions, tasks, and individuals.

Our work is motivated by the need for a large-scale foundation model in neuroscience–

one that can go beyond the limitations of single-dataset approaches and offer a fuller,

more comprehensive picture of brain function. In this thesis, we propose novel method-

ologies and frameworks aimed at addressing the challenges of building such a model.

We discuss three main contributions. The first contribution is towards building scalable

and unified approaches for training on diverse neural datasets. The second contribu-

tion aims to develop self-supervised methods for understanding dynamics at multiple

timescales, which is a key challenge in dealing with a system that is modulated by

short- and long-term dynamics. The third contribution of the thesis is to develop

methods for building invariances in neural data to further our understanding of the

brain.

This thesis pushes the boundaries of brain modeling, offering new methodologies

for integrating heterogeneous data, improving neural decoding, and building robust,

generalizable models. By bridging the gap between isolated datasets, we aim to

advance our understanding of the brain and open new avenues for comparing neural

activity across individuals and improving brain-machine interfaces.

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation

Understanding the brain is one of the most profound and challenging scientific en-

deavors of our time. The brain is not only the seat of consciousness and identity but

also the organ that enables all human experiences, from basic survival instincts to

the most complex thoughts and emotions. Deciphering its mechanisms holds the key

to enhancing cognitive abilities, addressing a myriad of neurological and psychiatric

disorders, and creating advanced artificial intelligence systems. Despite significant

advancements in neuroscience, our understanding of the brain’s networks and dynamic

processes remains incomplete. Advancing our understanding of the brain is crucial for

both scientific progress and the betterment of human health and society.

The brain is a complex system composed of billions of neurons across multiple

regions and is constantly involved in diverse and complex tasks. When recording from

the brain, however, we do not observe it fully, we observe it through a slice along both

spatial —few neurons at a time— and task —a specific task and context— dimensions.

Indeed, existing invasive recording devices only record a few dozen to a few thousand

neurons, and recordings are usually conducted under structured and meticulously

designed experiments where one or a few brain regions are targeted and where a subject

is usually given a repetitive simple task. Thus, a single dataset captures a narrow

slice of the brain, and thus we are limited in insights we can derive. Most existing

computational models are trained on individual datasets, which limits their ability

to generalize across different conditions and subjects. This one-dataset-at-a-time

approach often results in models that are overly specialized and lack the robustness
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needed to capture the brain’s complexity. We need an approach that can leverage

multiple datasets, and stitch together all these different slices, to build a fuller picture

of the brain that truly reflects its complex multifaceted nature.

To advance our understanding of the brain, we need a foundation model, a large-

scale generalist model that is trained on multiple diverse datasets. Integrating diverse

datasets allows for the exploration of common patterns and unique variations across

different brain states, tasks, and individuals. This holistic approach can lead to the

development of models that not only perform better in individual tasks but also exhibit

transfer capabilities across various domains and populations. Such integration poses

significant technical challenges, that we strive to address in this thesis. First, because

recording devices only record a random small number of neurons, each recorded

population is going to be virtually unique from session to session and from subject

to subject. This explains why most current approaches are built to operate on a

single population of neurons at a time. Across days and across individuals, the set of

neurons that are being recorded changes, rendering a model trained on a particular

population unreliable. Second, labels are not always possible to collect, especially in

unconstrained, free-behavior settings. This requires self-supervised learning methods

to learn representations from a wider range of datasets.

In this thesis, we propose novel methodologies and frameworks that facilitate the

integration of multiple datasets into unified models. Our work focuses on developing

scalable algorithms that can efficiently handle large and heterogeneous data, employing

advanced techniques in machine learning and neuroscience. We demonstrate the

effectiveness of our approach through rigorous experiments, showcasing its ability to

enhance model performance and uncover new insights into brain function. By bridging

the gap between isolated datasets, we aim to push the boundaries of what is possible

in brain modeling, opening new avenues for research and application.

2



1.2 Contributions

This thesis has three contribution chapters, each addressing a unique challenge in

building models of the brain and behavior. Collectively, these contributions move us

further towards establishing a foundation model for neuroscience.

1.2.1 A unified scalable framework for neural population decoding

Current neural population decoding models are typically built to operate on a single

population of neurons at a time, because across days and across individuals, the set

of neurons that are being recorded changes. First, this limits the use of such models

in brain-computer interface applications, since frequent and extensive calibration is

required. Second, this goes against a fundamental principal in deep learning, where

substantial amounts of data are usually needed to train expressive models that perform

well.

In Chapter 2, we propose a novel framework that addresses these core challenges.

POYO is a transformer model that can take in an arbitrary number of neurons, in

any order, to build a scalable model that is trained a large collection of datasets. To

demonstrate the flexibility and scalability of our multi-session training framework,

we apply it to a wide range of motor, visual, and decision making tasks from elec-

trophysiology datasets collected in monkeys, humans, and mice. In particular, we

train three large models, the first being from 7 nonhuman primates (27,373 units)

engaging in four different motor tasks across three laboratories, the second combining

human and monkey motor cortical datasets (9,789 monkey units + 1,920 human units)

in diverse tasks, and the third from 58 mice (99,180 units) engaged in visual tasks

during recordings to multiple regions in the cortex, deep, and midbrain structures.

In these cases, we demonstrate that our pretrained models can be rapidly adapted

to new, unseen sessions, enabling few-shot performance across animals and species

3



with minimal labels. Our results highlight the power of scale and demonstrate how

pretraining on large datasets can benefit neural data analysis.

1.2.2 A self-supervised approach for multi-timescale behavior representation learning

Brain and behavior are intimately tied, to understand the brain, requires that we

also understand behavior. We do this, for example, with brain-machine interfaces in

Chapter 2 where we train models to decode visual and motor tasks and thus infer the

link between brain and behavior. But this only tells us what happens at a sub-second

timescale, and only for lower-level brain functions, in reality, the brain is involved in

much more complex behavior that is modulated at different time scales. For such time

scales, we usually do not have labels: we are able to record videos of the subject, track

their position, the position of their limbs, or their eye gaze, but we cannot say much

about their mental state, or the task they are engaging in, and how they are going

about solving that task, at least without further analyzing the observed behavior.

To build a generalist foundation model that can give a full picture of the brain

functions, we cannot limit ourselves to only datasets that have labels, we need to figure

out how we can work with neural datasets for which we do not have clean behavior

labels, datasets that might be recorded in brain regions responsible for higher order

processes, and that might not directly correlate with behavior at the sub-second level.

Chapter 3 deals with learning multi-timescale representations of behavior. In this

chapter, we develop a multi-task representation learning model for animal behavior

that combines two novel components: (i) an action-prediction objective that aims

to predict the distribution of actions over future timesteps, and (ii) a multi-scale

architecture that builds separate latent spaces to accommodate short- and long-term

dynamics. After demonstrating the ability of the method to build representations

of both local and global dynamics in robots in varying environments and terrains,

we apply our method to the MABe 2022 Multi-Agent Behavior challenge, where our

4



model ranks first overall on both mice and fly benchmarks. In all of these cases, we

show that our model can build representations that capture the many different factors

that drive behavior and solve a wide range of downstream tasks.

1.2.3 Learning invariances in neural population activity

Interpretability is important to consider when building tools that are aimed at under-

standing the brain. Sometimes, the goal is not to decode behavior, but to understand

the dynamics underlying the brain state of an individual during a given task. Typi-

cally, this is done through dimensionality reduction, or more generally representation

learning. Traditional dimensionality techniques aim to capture the main directions of

variability in the neural population activity, but these dimensions can be noisy: the

electrodes in the brain can drift over time, or the subject can be engaged in auxiliary

tasks that are irrelevant to the study. To build representations that are invariant

to these potential sources of noise, we leverage self-supervised techniques that use

augmentations to control which desired invariances are built into the representation.

Chapter 4 introduces Mine Your Own vieW (MYOW), a self-supervised learning

approach that builds representations by maximizing the similarity between different

"views" of a sample. Like in other domains, designing good augmentations generally

requires a significant level of domain knowledge. With MYOW, we introduce a set

of augmentations designed for neural population activity, as well as, a new strategy

that looks within the dataset to find similar views of the brain state. The idea

behind our approach is to actively mine views, finding samples that are neighbors in

the representation space of the network, and then predict, from one sample’s latent

representation, the representation of a nearby sample. After showing the promise of

MYOW on benchmarks used in computer vision, we highlight the power of this idea in

two novel applications in neuroscience. When tested on multi-unit neural recordings,

we find that MYOW outperforms other self-supervised approaches in all examples (in
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some cases by more than 10%), and often surpasses the supervised baseline. With

MYOW, we show that it is possible to harness the diversity of the data to build rich

views and leverage self-supervision in new domains to build more insights about the

data.

6



CHAPTER 2

A UNIFIED, SCALABLE FRAMEWORK FOR NEURAL

POPULATION DECODING

2.1 Introduction

Recent advances in machine learning, particularly in the context of large-scale pre-

trained models like GPT [1, 2, 3, 4], have showcased the immense potential of scaling

up, both the terms of the size of datasets and models [5, 6]. Similarly, in neuroscience,

there is a growing need for a foundational model that can bridge the gaps between

diverse datasets, experiments, and individuals, allowing for a more holistic under-

standing of brain function and information processing [7]. The development of such a

model would allow researchers to uncover underlying patterns and interactions within

neural populations [8], and potentially allow for more robust decoding of brain states.

However, creating a large-scale neural decoding model that can effectively combine

spiking datasets from various sources is a complex challenge [9]. One of the central

challenges is the lack of a shared “vocabulary” in neural recordings. Unlike the case

for text—wherein every document written in a given language shares a basic lexicon

for tokenization—there is no one-to-one correspondence between neurons in different

individuals. As such, every recording from a different individual involves a unique set

of neurons that cannot be easily aligned with another set. An additional core challenge

lies in the inherent variability of neuron sets observed across different days [10]. Even

when monitoring the same individual, variability in electrode/tissue interface can

lead to distinct neuron sets which, despite advanced sorting methods, can lead to

inconsistencies in input channels across sessions [11, 12, 9]. Overall, this lack of

correspondence across recordings complicates the integration of information from
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different experiments and individuals, ultimately hampering efforts to construct a

unified perspective on population-level interactions and dynamics in the brain.

In response to these challenges, we propose a new framework for large-scale

training on neural spiking data called POYO (Pre-training On manY neurOns).1 This

framework is designed to enable scalable and efficient training across multiple sessions

of neural recordings, even when spanning different sets of neurons with no known

correspondence. Our approach centers around a novel tokenization scheme that

transforms individual neural action potentials, or “spikes”, into discrete tokens, thereby

preserving the neural code’s finest temporal structure while simultaneously enhancing

computational efficiency. The resulting tokenization not only allows for a more effective

representation of neural activity but also paves the way for training on larger volumes

of data. We combine this input tokenization method with an architecture that builds

on the PerceiverIO [13] to compress the input spikes into a latent space and learns

interactions across spikes in time and across neurons.

We evaluate the performance of our proposed approach on data from over 158

sessions from open electrophysiology datasets from seven non-human primates (NHPs),

spanning over 27,373 units and 100 hours of recordings. We demonstrate that through

pretraining on large amounts of data, we can transfer with very few samples (few-

shot learning) and thus improve overall brain decoding performance. Our work not

only presents an innovative framework for training large models on neuroscience

datasets, but also offers insights into the scaling laws that govern decoding from

neural populations. By enabling the development of large pretrained models for

neural decoding, our approach advances the field of brain-machine interfaces and other

decoding applications.

The main contributions of this work include:

• A framework for large-scale training on neural recordings: We present a novel
1Poyo is the exclamation used by Kirby, who has an insatiable appetite. Similarly, POYO consumes

spikes from many neural datasets and combines them into one unified model.
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framework for training transformer models end-to-end on multi-session and

across-individual electrophysiology datasets derived from neural populations,

enabling efficient and effective decoding from a diverse range of neural recordings.

• Innovative spike-based tokenization strategies: We introduce a fundamentally

different way to tokenize neural population activity. Our approach tokenizes

individual spikes (events) across neural populations, preserving fine temporal

structure and enhancing computational efficiency by adopting a sparse represen-

tation of the data.

• Pre-trained models for neural decoding: We build two large pretrained models

(POYO-1, POYO-mp) that can be fine-tuned on new sessions and across recordings

from different animals and new behavioral tasks. We will make the weights

and code available, and provide both pretrained models as a resource to the

community.

2.2 Approach

The transformer architecture [14], originally introduced in the context of natural

language processing (NLP), has shown remarkable flexibility and effectiveness in

various domains, especially in the presence of large and diverse datasets [15, 3]. In

this work, we explore how to leverage this versatility in the neural data domain.

2.2.1 Tokenizing neural population activity

Neurons communicate asynchronously using electrical impulses called spikes. The

timing and frequency of spikes encode signals that convey information about the

external world and coordinate the internal dialogue within the brain. In many

neuroscience experiments, neural activity is recorded from the brain through multiple

electrodes, and then processed [16] to extract the spiking events for a set of neural
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“units” [17]. The resulting data are multi-variate event-based sequences that are

typically very sparse relative to the number of recorded time points.

Neurons and their spikes are of course not independent of one another. Rather,

they are part of a complex, interwoven tapestry of neural activity, with each spike

contributing to a collective dialogue across billions of neurons. The true challenge and

opportunity lie in interpreting these spikes not in isolation, but in the context of this

broader “conversation.”

When trying to scale up and train on many sessions of data, we are faced with

the challenge of having recordings of neural conversations with completely different

set of “speakers” for which we don’t know the identity or their functional tuning (or

what they respond to). This is because each time we record from the brain, we are

tuning into a conversation between a new set of speakers. However, as with language,

there is some reason to think that neurons are ultimately communicating on similar

topics, e.g. sensations from the external world, internal states of the body, muscle

commands, etc. In other words, the lexicon may be different, but everyone is talking

about similar subjects. Despite the variability of our data, our aim is to decipher

these “conversations” in a way that generalizes to new neural datasets without fixed

or known correspondence across their inputs.

The neural tokenizer. Based upon these motivations, we propose a novel approach

for tokenizing neural population activity where each spike is represented as a token

(see Figure 4.1). In this case, each token can be defined in terms of which unit it came

from (via a learnable embedding) and the time that the spike event was detected.

By representing our data in this way, we never define or fix the expected number of

units, and the model can ingest populations of arbitrary size, and thus can be trained

across many datasets. At the same time, this approach also avoids having to specify a

specific time resolution for the neural code, as is the case with binning, and gets rid
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Figure 2.1: Overview of POYO. Input spike tokens are compressed into a smaller set
of latent tokens which are processed through multiple self-attention blocks, finally
time-varying outputs are predicted by querying the latent space. All tokens in this
model are assigned a timestamp, which are used towards rotary position encoding.

of the accumulation of a lot of sparse tokens containing no events.

More concretely, we assign each unit a unique identifier and a corresponding

D-dimensional learnable embedding. Let UnitEmbed(·) denote a lookup table that

associates each unit to its unit embedding. Akin to word embeddings that encode

semantic meaning and relationship between words, the unit embedding space encodes

something about the “speaker’s” identity and role in neural computation. A unit fires

a sequence of spikes in a context window of time [0, T ]. Each spike will be represented

by a token characterized by (xi, ti), where

xi = UnitEmbed(spike i′s unit)

is the learned embedding associated with the unit that emitted the spike and ti is the

event timestamp.

Collectively, and for an arbitrary set of units, we combine all the spikes into a
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sequence of length M . The neural population activity is represented by [x1, . . . ,xM ]

and their corresponding times [t1, . . . , tM ]. While the size of our context window T

stays fixed, M will vary depending on the number of units in the population and their

firing rates (see Figure 4.1). Note that all spikes from a specific unit have the same

unit embedding, and only differ in their timing.

2.2.2 Building the latent space

Compressing the input sequence. Rather than processing the input sequences

with self-attention, which is quadratic in sequence length and can be expensive for

long sequences, we use a perceiver encoder module [18] that summarizes the input

sequence into a shortened “latent” sequence. Let’s consider a sequence of M input

tokens X = [x1, . . . ,xM ] and a sequence of learned latent tokens Z0 = [z0,1, . . . , z0,N ],

where z0,i ∈ RD and N ≪ M . We use cross-attention to pull information from the

input sequence into a compressed latent sequence. The queries Q = WqZ0 are a

projection of the learned latent tokens Z0 and the keys and values are a projection

of the input tokens: K = WkX and V = WvX, respectively. We use the standard

transformer block with pre-normalization layers and feed-forward nets.

Attention in the latent space. Following the compression of the input sequence

through cross-attention, we apply multiple self-attention blocks on the latent token

sequence, which now costs O(N2) instead of O(M2) with N ≪M . Let Zl denote the

embedding of the latent tokens at the lth layer. We denote the final latent sequence

obtained after L layers as ZL = [zL,1, . . . , zL,N ].

2.2.3 Encoding relative timing information

To incorporate timing information, we leverage rotary position encoding (RoPE) [19]

across all attention layers in the architecture. Unlike traditional position encoding

methods that inject absolute position information into the token’s embedding, RoPE
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applies a rotation operation in the query, key embedding space, allowing each token

in a sequence to attend to others based on its relative positional information.

Recall that each input token i has an associated timestamp ti. We will also assign a

timestamp to each of the latent tokens: we divide the latent tokens into groups of equal

size and spread each group uniformly over the context window [0, T ]. This method

allows us to capture temporal relationships between the latent tokens and the input

tokens, enabling a temporal understanding of the encoded sequence. By distributing

the latent tokens evenly within the context window [0, T ], we create a structured

temporal representation, which preserves and propagates temporal information all the

way through the model.

2.2.4 Querying the latent space

Having built a latent space which can encode and model any population of units, we

now want a flexible way to readout behavioral variables. The output of the latent

encoder is the latent sequence of size N , while the desired output can be any arbitrary

sequence of length P . Let us consider the task of hand velocity decoding for example,

in the context window [0, T ], the length of the output sequence will depend on the

sampling frequency. Since we aspire to train on datasets sourced from various labs, the

sampling rate can differ significantly. We thus need a flexible mechanism for predicting

outputs of varying lengths and querying from the neural activity at specific points in

time.

We define a sequence of output tokens Y0 = [y0,1, · · · ,y0,P ], where P is the number

of output time points, which can change across sequences. Each output token is defined

by (y0,i, t
out
i ). Initially all the output tokens within a session are set to the same

learned embedding y0,i = y0 ∈ RD ∀i. The output Y is obtained by querying the

latent space through cross-attention.

Since we use rotary embeddings, and both the latent and output tokens have
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assigned timestamps, the querying mechanism can leverage the relative position of

latent and output tokens to extract the temporally relevant context that enable

prediction of the behavioral variable of interest.

Session embeddings. To account for variability of the experimental setups in

real world settings, we propose to define a learnable session embedding which captures

the hidden experimental variables. This information is injected into the output query

y0, where again we use a lookup table to register each new session we encounter. This

produces a set of output tokens of the dimension of the number of queries which

we then pass through an MLP to generate the behavioral variables of the desired

dimension (e.g., 2D for hand velocities in a planar movement task).

2.2.5 Unit identification in new sessions

Our design of the unit embedding space allows our model to learn latent information

about the units it encounters, as well as capture the relationship between units in the

population. Given a new recording with unidentified units, we can transfer our model

by mapping these new units into the unit embedding space. To do this, we introduce

an approach that we call “unit identification”, which leverages gradient descent to

learn the embeddings of new units. In this approach, we freeze all existing weights

of the model and simply add new rows to the UnitEmbed(·) lookup table for each of

the new units, as well as a new session embedding. Notably, the bulk of our model

which maps the neural population activity to behavior is unchanged and is simply

transferred to the new dataset. In our experiments, we find that this approach is

surprisingly effective and allows us to rapidly integrate new datasets into the same

underlying model.
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2.3 Application to monkey motor cortical datasets and movement decod-

ing tasks

In a first application of our approach, we curated a multi-lab dataset with electrophys-

iological recordings from motor cortical regions, where neural population activity has

been extensively studied [10], and deep learning tools and benchmarks like the Neural

Latents Benchmark (NLB) [24] have recently been established.

2.3.1 Datasets and experiment setup

One of the key advantages of our approach is its ability to scale to handle large

amounts of neural data, including sessions from different numbers of neurons, across

different tasks and recording setups, and from different animals. Thus we set out to

build a diverse dataset large enough to test our approach. We curated a multi-lab

dataset with electrophysiological recordings from motor cortical regions, where neural

population activity has been extensively studied [10], and deep learning tools and

benchmarks have recently been established [24]. In total, we aggregated 178 sessions

worth of data, spanning 29,453 units from the primary motor (M1), premotor (PMd),

and primary somatosensory (S1) regions in the cortex of 9 nonhuman primates (see

Table 2.1). We place this in the context of standard analyses within a single lab or

paper which typically involve 10’s of sessions and a few hundred neurons.

All of these neural recordings were collected while the animals performed various

Table 2.1: Datasets used to train POYO. CO: Center-Out, RT: Random Target.

Study Regions # Indiv # Sess # Units # In # Out Tasks
Perich et al. [20] M1,

PMd
4 117 11,557 143M 20M CO,

RT
Churchland et al. [21] M1 2 9 1,728 706M 87M CO
Makin et al. [22] M1, S1 2 47 14,899 123M 15M RT
Flint et al. [23] M1 1 5 957 7.9M 0.3M CO
NLB-Maze [24] M1 1 1 182 3.6M 6.8M Maze
NLB-RTT [24] M1 1 1 130 1.5M 2.8M RT
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motor tasks that vary in their inherent complexity (see Figure 2.2A-B). The center-

out (CO) task is relatively stereotyped, with the animal making a reach to one of

eight targets after receiving a go cue, and then returning to the center. In contrast,

the random target (RT) task is significantly more complex. The animals make

continuous and self-paced movements with new targets appearing in succession at

random locations in the workspace. In addition to the greater exploration of the

workspace and heterogeneity in movements, this task allows individual to plan their

next movement while finishing the execution of the current movement leading to

greater complexity in neural dynamics. Other sources of variability that we find

across labs include the: choice of pre-processing algorithms (spike sorting or threshold

crossing analysis), type of controller (manipulandum, touch screen), and sampling rate

when recording behavior (100Hz to 1kHz). We do not re-process the data or attempt

to standardize it across labs or tasks. Further details on the datasets are provided in

subsection 6.1.2.

Experiment setup. Throughout all of our experiments, we use a context window

of 1s and do not segment data into trials during training. We only use the trial

structure when reporting the decoding performance, in particular, center-out sessions

are evaluated during the reaching movement. We train the model with N = 512 latent

tokens and a dimension D = 128. We use the LAMB optimizer [25], and employ a

cosine decay of the learning rate at the end of training. For every session, we holdout

20% of the trials for testing, and 10% for validation. We use 1-GPU and 8-GPU setups

for single-session and multi-session models, respectively.

2.3.2 Testing the model on single sessions

To first investigate the performance of our architecture when trained on a single

session, we trained single-session models on 100 different recording sessions acquired

from three nonhuman primates (Monkey C, Monkey M, Monkey Ja), each containing
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Figure 2.2: Building a multi-session model spanning multiple animals and tasks. (A)
Center-out reach and (B) Random target task [20], along with examples of true and
predicted behavior (x,y velocities). In (C-D), we show the decoding performance for
single-session models (gray) and the POYO-mp multi-session model (green).

anywhere from 10 to 106 minutes of data [26]. In all of these recordings, the same

behavioral task setup, behavioral recording apparatus (10 ms temporal resolution),

and spike sorting procedure was used.

Across all 100 single-session models, we obtained an average R2 of 0.9347 on CO

and 0.8402 for RT sessions. When we compared these single-session results with

existing models for neural decoding, including a Wiener Filter, GRU and MLP [27], we

found that our approach consistently outperforms these baselines, with even greater

improvements observed on the RT task. Additionally, we found that our single-session

models are stable for a wide range of hyperparameters.

2.3.3 POYO-mp: Building a large pretrained across-animal, multi-session model

To investigate the question of how training with more sessions of data can improve brain

decoding, we trained a large model (POYO-mp, 24 layers) on all 100 sessions that we stud-

ied in our single-session analysis. In total, we used 9,789 units and 4,367 neuron-hours

(number of neurons × amount of time recorded) to train our POYO-mp model.

17



This model achieves an average test R2 of 0.9512 on the center-out tasks and 0.8738

on the random target tasks, which is a marked improvement over the single-session

average. When we compared the performance of our multi-session model to single-

session models head-to-head (see Figure 2.2C-D), we found that across the board,

multi-session training improves over single-sessions, and we observed even greater

improvements for datasets with fewer trials (indicated by the size of the circles in the

plot). On RT sessions, we observe an even bigger improvement over the single session

models. These results suggest that there are significant benefits in joint-training across

multiple sessions, especially when decoding more complex behaviors like the random

target task.

Scaling analysis. By enabling multi-session training, we can start to ask questions

about the extent to which having more data or more parameters can improve decoding

( Figure 2.3). Thus, we studied the improvements obtained for three different depths

of models, with L=6 (3.8M), L=14 (7.4M), and L=26 (13M) layers (parameters). For

both CO and RT tasks, we find that even at the same depth (L=6), our 1 multi-session

model shows an improvement over the average performance of 100 single-session models.

We see further improvements with increasing the model depth, with the RT task

Table 2.2: Behavioral decoding results across neural recordings from two nonhuman
primates performing two different tasks. All the baselines and the single-session model
are trained from scratch, while POYO-mp and POYO-1 are pretrained. The standard
deviation is reported over the sessions. The number of sessions in each dataset is
contained in (·) and the top performing models in each category are indicated in
boldface (first) and underlined (second).

Same animal, New day New animal
Method Monkey C - CO (2) Monkey T - CO (6) Monkey T - RT (6)

Fr
om

sc
ra

tc
h Wiener Filter 0.8860 ± 0.0149 0.6387 ± 0.0283 0.5922 ± 0.0901

GRU 0.9308 ± 0.0257 0.8041 ± 0.0232 0.6967 ± 0.1011
MLP 0.9498 ± 0.0119 0.8577 ± 0.0242 0.7467 ± 0.0771
POYO-[Single-session] 0.9682 ± 0.0111 0.9194 ± 0.0185 0.7800 ± 0.0702

P
re

-
tr

ai
ne

d POYO-mp + Unit ID 0.9675 ± 0.0079 0.9012 ± 0.0271 0.7759 ± 0.0471
POYO-mp + Finetune 0.9708 ± 0.0116 0.9379 ± 0.0193 0.8105 ± 0.0561
POYO-1 + Unit ID 0.9677 ± 0.0096 0.9028 ± 0.0248 0.7788 ± 0.0548
POYO-1 + Finetune 0.9683 ± 0.0118 0.9364 ± 0.0132 0.8145 ± 0.0496
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Figure 2.3: Scaling curves. R2 is evaluated and averaged over the test splits on both
CO and RT tasks. The single-session performance is the mean over 100 different
models.

benefiting even further from scaling. When we fix the model depth to L=6, and study

how training jointly with more data contributes to improvement in performance, we

find an improvement in performance when comparing single-session training (average

1.2M tokens) to training jointly on all RT sessions (26M tokens). When we also train

jointly with other CO sessions (134M tokens in total), and increase model depth to

help in accommodating the more growing and diverse training set, we continue seeing

improvement in the decoding performance on RT sessions, accumulating to 4% over

our single-session baseline.

2.3.4 Transferring to new sessions

After pretraining, we can then test on new sessions with unknown neurons using

either the (i) unit identification approach we described in subsection 2.2.5, or (ii)

full finetuning of the model weights. Recall that when we use a unit identification

approach, we freeze the weights of the model and only learn new unit and session

embeddings.
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Figure 2.4: Sample and compute efficiency for training, unit identification, and fine-
tuning approaches. On the left, we show the sample and compute efficiency for a
heldout CO session. On the right, we plot the sample and compute efficiency for a
new animal not seen during training.

Results on held out sessions from the same animals. We first tested the unit

identification approach on held-out sessions from Monkey C that are unseen during

training (Table 2.2, Left). In this case, we don’t have correspondence between units

in the training and the testing conditions. Surprisingly, we find that we can achieve

comparable performance with unit identification on the pretrained model (0.9675)

with that of the single-session models trained fully from scratch (0.9682). With further

finetuning of the rest of the model’s weights, we can improve the accuracy further

(0.9708) to go beyond the accuracy of the single-session models. This highlights the

robustness of our model and its flexibility to accommodate fresh data with even a

simple input mapping.

We compare with the single session model and a GRU baseline (Figure 2.4A) with

our multi-session model trained on the same number of trials. Both our single-session

and finetuning approach achieve good performance scaling as we increase the number

of samples, with the finetuning maintaining a gap over the single session models over

the entire sampling space.

Results on a new animal performing the same tasks. Next we tested our

model on 12 sessions from a completely new animal (Monkey T) that was not included

in the training of the model (Table 2.2). When we applied our unit identification

approach on the multi-session model (POYO-mp + Unit ID), we see a bit of a dip in

overall accuracy from the single-session model (POYO-[Single-session]); however, when
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Table 2.3: Behavioral decoding results for datasets from the Neural Latents Benchmark
[24]. Best performing model is in bold and second best model is underlined.

Method NLB-Maze NLB-RTT

Fr
om

sc
ra

tc
h

Wiener Filter 0.7485 0.5438
GRU 0.8887 0.5951
MLP 0.8794 0.6953
AutoLFADS + Linear [28] 0.9062 0.5931
NDT + Linear [29] 0.8929 0.5895
NDT-Sup [30] 0.8708 0.4621
EIT [30] 0.8791 0.4691
POYO-[Single-session] 0.9470 0.6850

P
re

tr
ai

ne
d POYO-mp + Unit ID 0.8962 0.7107

POYO-mp + Finetune 0.9466 0.7318
POYO-1 + Unit ID 0.9329 0.7294
POYO-1 + Finetune 0.9482 0.7378

we fine-tune the weights of the model further, we achieve an accuracy of 0.9379 on CO,

which is a significant improvement over all of the other baselines. For the RT task, the

single session model is 0.7569 and with unit identification we achieve 0.7669 and with

full fine-tuning we get up to 0.7916 (Figure 2.4B). These results are promising and

show that we can use our pretrained model on new animals with only a few minutes

of labeled data.

Performance on the Neural Latents Benchmark (NLB). To understand how

well our pre-trained model performs on data collected from new animals performing

novel tasks with different equipment (example: touch screen vs. manipulandum), we

applied our pretrained model to the MC-Maze (Monkey L) and MC-RTT (Monkey I)

datasets from the NLB (Table 2.3)[24]. The NLB serves as a benchmark for neural

representation learning and decoding and thus we can include other single-session

baselines to our comparisons, including self-supervised models AutoLFADS [28] and

NDT [29] which produce denoised firing rate estimates over which we fit a linear layer

(+ Linear), a supervised variant of NDT [30] (NDT-Sup), and EIT [30]. Both datasets

contain single sessions from new animals performing movement tasks that we haven’t

seen during training.
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On the NLB-Maze dataset, we obtain a R2 of 0.8952 after unit identification,

which is competitive with the baselines. These results are surprising since we do not

modify the model’s weights, and yet our pretrained model yields competitive results

on a dataset collected under very different conditions. When we finetune the model,

we boost the performance even further establishing a 4.4% gap over the best baseline.

Similar trends can be observed for the RTT task (Monkey I), with even larger (2%)

improvement after finetuning.

2.3.5 POYO-1: A multi-lab, multi-task model for neural decoding

Given the impressive transfer results of POYO-mp to datasets from different labs, we

ask whether we can use our approach to build a model that spans even more diverse

recording setups that we expect to encounter when trying to unify data from many

sources. In total, we used datasets from seven nonhuman primates spanning three

different labs, with a total of 27,373 units and 16,473 neuron-hours for training our

model. We call this pretrained multi-lab, multi-task model POYO-1.

Even in light of the high amounts of variability across these different datasets,

POYO-1 provides consistent improvements over the single-session models (Figure 2.5C).

When tested on a number of different transfer tasks (Table 2.2, Table 2.3), we again

find that the unit identification and finetuning approaches provide effective strategies

for adapting our pretrained model to new datasets. We obtain notable performance

on the NLB-Maze, where we find that we obtain a R2 of 0.9329 with only unit

identification remapping, an almost 4% improvement over the unit identification result

for our POYO-mp pretrained model, suggesting that we cover more of the task space

with POYO-1.

When comparing the POYO-1 model with POYO-mp model, it is clear that both

methods have their strengths. POYO-mp excels on the datasets sourced from the same

lab, with 0.8788 on RT sessions compared to POYO-1’s 0.8664. On the other hand,
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Figure 2.5: Scaling up to more tasks and diverse neural and behavioral recording
conditions. (A) Random target task from Makin et al. included in training of
POYO-1 and (B) Maze task from NLB heldout for transfer testing. In (C) decoding
accuracy for the single-session (gray) and the POYO-1 model (blue). (D) PCA projection
of the learned session embeddings.

both models exhibit great transfer capabilities, with POYO-1 having the edge especially

when using unit identification, indicating its ability to generalize better across diverse

experimental conditions. This flexibility and scalability make these methods promising

tools for future research in analyzing neural data from diverse sources.

Visualizing the session embedding space. We visualized the learned task

embeddings to see if the model learns relationships between sessions seen during

training (Figure 2.5D), even though it was not explicitly trained with this information.

This analysis revealed clusters corresponding to different data sources and tasks,

suggesting that our model has not only learned to identify patterns within each session

but also recognized overarching structures across sessions. In particular, we find that

the datasets collected in the Miller Lab (C,M,J) used to train the POYO-mp model are

mapped into similar regions of the session latent space, and (I and L) sessions are

mapped to their own distinct clusters.
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Figure 2.6: Multi-session and transfer for decoding imagined letters into text. The
decoding error rate is plotted as we vary the amount of pretraining data provided to
the model.

2.4 Application to human decoding of hand writing

In an impressive feat, we have successfully demonstrated that it is possible to pretrain

on neural recordings from monkeys performing real hand movements, and transfer the

model to decode imagined handwriting from human electrophysiological recordings

(Figure 2.6). In a challenging decoding task, a human paraplegic subject imagines

writing single characters—the 26 letters of the alphabet and 6 control characters [31]

—while neural recordings are measured from their motor cortex. In our analysis, we

show that it is possible to transfer the monkey decoder model to effectively decode

the human data and drive down the error rate by an average of 12.8%. This proof-

of-concept showcases the utility of our approach for transfer in important clinical

applications.

2.5 Application to mouse multiregion decoding of visual stimuli and

behavior

To further demonstrate the flexibility of our approach, we next applied it to the

Allen Institute Neuropixels Survey (AINS), which contains high-density, simultaneous
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Figure 2.7: Results on datasets from the Allen Institute for Brain Science’s Neuropixel
Visual Survey.

electrophysiological recordings from a wide range of different visual cortical areas that

extend across the visual hierarchy as well as thalamus, hippocampus, and midbrain

regions [32]. This dataset consists of 3.08B spikes, 99,180 units, across 59 animals.

When trained to perform a 8-class classification task to predict the orientation of

drifting grating visual stimuli, we successfully demonstrate that our model works

well and outperforms single session models (Figure 4.4). This result highlights the

flexibility of our encoder-decoder framework (moving from a dense prediction task

to a sparse sequence-level task) and its ability to work well on recordings spanning

multiple brain areas.

2.6 Related Work

Transformer architectures for time-series data. Transformers have emerged

as a powerful model for processing time-series data due to their ability to capture

long-range dependencies [33, 34]. The key to their success lies in the self-attention

mechanism [14], which allows the model to weigh the importance of each time step

in the input sequence when producing an output. A typical approach in applying

transformers to time-series data involves discretizing the continuous time domain into
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discrete bins [34], and treating the binned data as a sequence of tokens. Each bin

is then linearly projected into a high-dimensional embedding, which is input to the

transformer model. The Perceiver framework [18, 13] moves away from the idea of

patches, by directly processing the input bytes, using cross-attention layers to reduce

the complexity of attention. In addition to regular timeseries, there has been interest

in applying transformers to model irregular timeseries including event stream and

point process data [35, 36, 37]. However, many of these models work on univariate

event streams and when they extend to multivariate cases, they assume fixed and

known input channels.

Transformers applied to neural data. With the recent advances in trans-

formers for sequence modeling in many different time-series, transformers have also

recently found successful applications in building representations of neural population

activity [29, 30, 38]. In these models, the spiking activity is first binned and then

the estimated bin counts are tokenized. In the neural data transformer (NDT) model

[29], the firing rates of all neurons in the population are embedded jointly in one

token (time step or bin). In the embedded interaction transformer (EIT) [39], neurons

are considered independently in one stage of processing and at a population level

in a second stage, and thus the whole dataset is tokenized over both neurons and

time. In the spatiotemporal (STNDT) model [38], two different tokenizations are also

considered, one in space and one in time, and two representations are learned jointly

for both tokenizations. In all cases, binned data are used and the models are trained

on a single session and fixed set of neurons.

In the THP, for example, the time embedding is given by a sinusoidal function

of the event timestamps, which allows the model to capture periodic patterns in the

data. Event types are represented by one-hot vectors, which are transformed into

embeddings via a trainable embedding matrix. The time and event type embeddings

are then combined to form the input to the transformer, which uses self-attention to
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compute a representation of the event sequence. The output of the transformer is then

used to model the ’conditional intensity function’, which predicts the likelihood of

future events given the past history. This approach has been shown to achieve state-

of-the-art performance on a range of predictive tasks involving event data streams,

demonstrating the power of transformers in this domain [37, 40, 36].

Tokenization for time-series data. In most applications of transformers to

time-series data, each channel or time-series is divided into uniform bins. This scheme

results in a sequence of tokens, where each token corresponds to a vector or single

scalar representing the time-series data. This can be performed over a sliding and

overlapping window or by creating a non-overlapping set of bins that tile the full

sequence. Once the time-series is tokenized as a temporal sequence, then a wide range

of position embeddings that are used in language can be employed. Recently, more

advanced tokenization schemes have been developed to better capture the structure

and dependencies within time-series data. TokenLearner [41] learns tokens in video

data. A-VIT [42] considers adaptive tokenization for images, and multiple works now

consider more efficient attention mechanisms through token pruning [43].

Representation learning and decoding for neural recordings. Representa-

tion learning from neural time-series data has become an increasingly important area

of research in neuroscience [44, 29, 45, 39]. In LFADS, the aim is to predict neural

activity from a sequential autoencoder [44]; AutoLFADS extends this approach [28]

to add regularization to avoid overfitting and enable hyperparameter optimization.

Pi-VAE proposes a semi-supervised generative VAE model for neural activity [46].

In MYOW [45] and Swap-VAE [39], they learn contrastive representations of neural

population firing rates through dropout and temporal augmentations. Approaches

for multi-modal contrastive learning have also been proposed [47], where behavior

and neural recordings can be jointly embedded. In contrast to our work, all of these

methods use fixed input representations that don’t allow for multi-session training.
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Multi-session training and alignment. The idea of decoding across multiple

sessions has been explored in previous work [44, 48, 49, 50]. In many of these works,

an initial baseline representation is formed on one day and alignment-based approaches

are used to transfer a model trained on one session across recording days [51, 52, 12,

53, 54]. A subset of these methods [44, 49] can be trained on many sessions jointly,

but rely on the assumption of shared dynamics or structure of a single task to achieve

alignment. To the best of our knowledge, our work is the first to demonstrate multi-

session transfer across subjects performing different tasks, and the first to demonstrate

scaling across different data and model sizes.

2.7 Discussion

In this chapter, we introduce a novel framework for training transformers on large multi-

session, multi-task neural activity datasets. To tackle the challenges of training on such

large heterogeneous sources, we introduce a novel spike-level tokenization scheme and

architecture that enables the model to learn from populations with varying numbers

of neurons. We show that training a single unified model on multiple recordings is

possible, and find that it leads to improved decoding performance. Finally, we build

two large pretrained models that can be efficiently fine-tuned on new datasets, and

make them available as a resource to the community.

In contrast to models trained on a single dataset, the pretrained models that

we have developed provide a potential way to compare and contrast datasets, and

also understand common motifs of activity and dynamics that may be shared across

different sessions, tasks, and individuals. Thus, it will be critical to develop tools to

probe the patterns and motifs learned by such models and characterize the neural

mechanisms underlying different tasks and computations. In particular, we look to

understand how spike tokens are grouped across different latent tokens and how the

dynamics of the population are modeled in this latent space. Additionally, our proposed
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unit embedding space allows us to map units into a high-dimensional space; thus

understanding how unit projections are organized might help reveal the similarities

between different neurons and the nature of their interactions. Similarly, we can

analyse the session embeddings to glean insights into inter-session and across-animal

differences.

Our work shows how pretraining on diverse data, including datasets from animals

performing different tasks and across different laboratories, can all help to improve

our ability to decode from novel and unseen neural datasets. Already, our results

demonstrate the positive effect of scale for neural data analysis. However, to scale this

approach further and integrate even more diverse brain regions and tasks, it will be

critical to move toward a self-supervised objective. Thus, our current architecture and

multi-session framework could be also extended to self-supervised tasks like generative

next-event prediction or masked modeling to allow for even larger datasets to be

ingested.

This framework has the potential to advance neuroscience research in several ways.

By enabling the development of large pretrained models that can be fine-tuned for

various downstream tasks, our work can accelerate progress in brain-machine interfaces

and disease modeling applications. The ability to quickly and effectively decode neural

activity from diverse datasets and modalities can have significant implications for

improving our understanding of the brain and developing new therapeutic interventions.
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CHAPTER 3

A SELF-SUPERVISED APPROACH FOR MULTI-TIMESCALE

BEHAVIOR REPRESENTATION LEARNING

3.1 Introduction

Behavior is shaped by various factors operating across different timescales. Immediate

motivations can drive moment-to-moment interactions, while long-term experiences

or even the time of day can influence behavior on broader scales. Analyzing these

dynamics, particularly in complex and naturalistic contexts [55, 56], has now become

a critical component in many modern studies in neuroscience [56], cognitive science,

and in social behavior and decision making [57, 58, 59, 60]. Additionally, monitoring

and tracking systems now allow for modeling of multi-agent interactions [61, 62, 63]

and social behaviors [58, 64], providing valuable insights into dynamics across many

individuals.

In order to learn latent factors that may influence behavioral patterns, a promising

solution is to build models of behavior in a unsupervised manner [65, 66]. Unsupervised

models are of particular interest in this domain as it becomes hard to identify complex

behaviors which can be composed of many “syllables” of movement [67], and are thus

hard and tedious to annotate. Recent work in this direction build such representations

using generative modeling and reconstruction-based objectives, typically by performing

open loop [68, 69, 70] or closed loop [69] prediction of observations or actions multiple

timesteps into the future.

However, when using a reconstruction or prediction objective to analyze behavior,

future actions become hard to predict and models can start to become myopic, focusing

only on short-range interactions in the data [67]. To circumvent this overly local
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learning of dynamics, there have been a number of efforts to build models of long-term

behavioral style [71, 72], where instance-level learning methods are used to extract a

single representation for an entire sequence. However, these models then lose their

ability to provide time-varying representations that capture the dynamic nature of

different behaviors. It is still an outstanding challenge to build representations that

can capture both short-term behavioral dynamics along with longer-term trends and

global structure.

In this chapter, we develop a new self-supervised approach for learning multiscale

representations of behavior. Our method consists of two core innovations: (i) a

novel action-prediction approach that aims to predict the distribution of actions over

future timesteps, without modeling exactly when each action is taken, and (ii) a

novel multi-scale architecture that builds separate latent spaces to accommodate short-

and long-term dynamics. We combine both of these innovations and show that our

approach can capture both long-term and short-term attributes of behavior and work

flexibly to solve a variety of different downstream tasks.

To test our approach, we utilize behavioral datasets that contain multiple tasks that

vary in complexity and contain distinct multi-timescale dynamics. Using NVIDIA’s

Isaac Gym [73], we generate a synthetic dataset of the multi-limb kinematics from

quadruped robots by varying the robot’s morphological properties and the environ-

ment’s terrain type and difficulty. Using this robot behavior data, we demonstrate

that our method can effectively build dynamical models of behavior that accurately

elicit both the robot and environment properties, without any explicit training signal

encouraging the learning of this information.

Having established that our approach can successfully predict the complex behavior

of an artificial creature, we apply it to two multi-agent behavior benchmarks [74] and

challenges with multiple tasks that vary in their frame-level (local) vs. sequence-level

(global) labels and properties. On the mouse triplet benchmark, we rank first overall
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Figure 3.1: Architecture of Bootstrap Across Multiple Scales (BAMS). BAMS uses
two temporal convolutional networks with two latent spaces, each with their own
receptive field sizes. The model is trained on a novel learning objective that consists
in predicting future action distributions instead of future action sequences. In this
figure, we use sample data from the MABe dataset, only a subset of the channels are
shown.

on the leaderboard 1 (averaged across 13 tasks), first on all of the 4 global tasks,

and are in the top-3 on all the 9 frame-level local subtasks. In one of the global

tasks (decoding the strain of the mouse), we achieve impressive performance over the

other methods, with a 10% gap over the next best performing method. On the fruit

fly groups benchmark, we also rank first overall 2 (averaged across 50 tasks), and

outperform other methods on both average frame-level and sequence-level subtasks.

Our results demonstrate that our approach can provide representations that can be

used to decode meaningful information from behavior that spans many timescales

(longer approach interactions, grooming, etc.) as well as global attributes like the time

of day or the strain of the mouse.
1aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-

triplets/leaderboards?post_challenge=true
2aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-fruit-fly-

groups/leaderboards?post_challenge=true
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3.2 Method

Our approach addresses two critical challenges of modeling naturalistic behavior

(Figure 4.1). In subsection 3.2.2, we introduce a novel distributional-relaxation of

the reconstruction-based learning objective. In subsection 3.2.3, we introduce an

architecture and self-supervised learning objectives that support the learning of

behavior at different levels of temporal granularity.

3.2.1 Problem setup

We assume a fixed dataset of D trajectories, each comprised of a sequence of obser-

vations xt and/or actions yt. Where actions are not explicitly provided, in many

cases we can infer actions based on the difference between consecutive observations.

Our goal is to learn, for each timestep, behavioral representations zt that capture

both global-information such as the strain of the mouse or the time of day, as well as

temporally-localised representations such as the activity each mouse is engaged in at a

given point in time. As obtaining labeled datasets for realistically-useful scales of agent

population and diversity of behavior is impractical, we aim to learn representations in

an unsupervised manner.

3.2.2 Histogram of Actions (HoA): A novel objective for predicting future

Modeling behavior dynamics can be done by training a model to predict future actions.

This reconstruction-based objective becomes challenging when behavior is complex

and non-stereotyped. Let us consider the example of a mouse scanning the room,

rotating its head from one side to the other. It is possible to extrapolate the trajectory

of the head over a few milliseconds, but prediction quickly becomes impossible, not

because this particular behavior is complex but because any temporal misalignment

in the prediction leads to increasing errors.
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We propose to predict the distribution of future actions rather than their sequence.

The motivation behind this distributional-relaxation of the reconstruction objective

lies in blurring the exact temporal unfolding of the actions while preserving their

behavioral fingerprint.

Predicting histograms of future actions. Let yt ∈ RN be the action vector

at time t. Each feature in the action vector can, for example, represent the linear

velocity of a joint or the angular velocity of the head. Given observations [x0, . . . ,xt]

of the behavior at timesteps 0 through t, the objective is to predict the distribution of

future actions over the next L timesteps. For each i-th element of the action vector,

we compute a one-dimensional normalized histogram of the values it takes between

timesteps t+ 1 and t+ L. We pre-partition the space of action values into K equally

spaced bins, resulting in a K-dimensional histogram that we denotes as ht,i, for all

keypoints 1 ≤ i ≤ N .

We introduce a predictor g that, given the extracted representation zt, predicts all

feature-wise histograms of future actions. The predictor is a multi-layer perceptron

(MLP) with an output space in RN×K . The output is split into N vectors, which are

normalized using the softmax operator. We obtain [ĥt,1, . . . , ĥt,n], each estimating the

histogram of the i-th action feature following timestep t.

EMD2 loss for histograms. To measure the loss between the predicted and target

histograms, we use the Discrete Wasserstein distance, also known as the Earth Mover’s

Distance (EMD). This distance is obtained by solving an optimal transport problem

that consists in moving mass from one distribution to the other while incurring the

lowest transport cost. In our case, the cost of moving mass from one bin to another is

equal to the number of steps between the two bins.

Because our histogram has equally-sized bins, the EMD is equivalent to the Mallows

distance which has a closed-form solution [75, 76]. In particular we use EMD2 which
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has been shown to be easier to optimize and converge faster [77]. The loss is defined

as follows:

DEMD2(ht,i, ĥt,i) =
K∑
k=1

(CDFk(ht,i)− CDFk(ĥt,i))
2, (3.1)

where CDFk(h) is the k-th element of the cumulative distribution function of h.

The total loss is obtained by summing over all features of the action vector, which

leaves us with the following loss at time t:

Lt =
N∑
i=1

DEMD2(ht,i, ĥt,i). (3.2)

3.2.3 Multi-timescale bootstrapping in a temporally-diverse architecture

In order to form richer and multi-scale representations of behavior, we use a self-

supervised learning objective. We introduce a new approach using latent predictive

losses to build representations across different scales while preserving the granularity

in each. We achieve this by explicitly separating the short-term and long-term

representations, then bootstrapping within each representation space. This approach

enables us to learn from otherwise incompatible representation learning objectives [78,

79].

Our goal is to capture and separate short-term and long-term dynamics in two

different spaces. We use the Temporal Convolutional Network (TCN) [80] as our

building block. The TCN produces a representation at time t that only depends on

the past observations [81].

We design an architecture that separates the different timescales by using two TCN

encoders: A short-term encoder, fs, that captures short-term dynamics and targets

momentary behaviors such as drinking, running or chasing; A long-term encoder,

fl, that captures long-term dynamics and targets longstanding factors that modulate
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positive range

positive range

Figure 3.2: Visualization of the short-term and long-term windows used to build
multi-scale similarity in BAMS. Positives are selected within a window. The window
is small for short-term embeddings and can be as large as the entire sequence for
long-term embeddings.

behavior (strain of mouse, time of day). Architecturally, the difference between the

two is that we increase the number of layers and use larger dilation rates [82] for the

long-term encoder, thus effectively covering a larger receptive field (more history) in

the input sequence. All feature embeddings extracted by the TCNs are concatenated,

to produce the final embedding, zt = concat[zst , z
l
t].

We draw inspiration from recent work [83, 84, 85] that uses latent bootstrapping

to learn a latent space where “positive” views are mapped close to each other. Unlike

other contrastive methods [86], bootstrapping does not require negative examples.

In the context of temporal representation learning, a common assumption is that

points that are nearby in time are positive views of each other and can be constrained

to lie nearby in the latent space [86, 87]. In our case, we can bootstrap and find

positive views at both the short-term and also at a more long-term scale, as illustrated

in Figure 3.2.

Bootstrapping short-term representations. We randomly select samples, both

future or past, that are within a small window ∆ of the current timestep t. In other

words, δ ∈ [−∆,∆]. Bootstrapping involves using a shallow network to predict the

representation of one view from the other [83]. We use a predictor qs that takes in the
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short-term embedding zst and learns to regress zst+δ using the loss:

Lr,short =

∥∥∥∥ qs(z
s
t)

∥qs(zst)∥2
− sg

[
zst+δ

∥zst+δ∥2

]∥∥∥∥2

2

, (3.3)

where sg[·] denotes the stop gradient operator. Unlike [83], we do not use an exponential

moving average of the model, but simply increase the learning rate of the predictor as

in [84].

Bootstrapping long-term representations. For long-term behavior embeddings

which should be stable at the level of a sequence, we sample any other time point in

the same sequence, i.e. t′ ∈ [0, T ]. We use a similar setup for the long-term behavior

embedding, where predictor ql is trained over longer time periods or in the limit, over

the entire sequence.

Lr,long =

∥∥∥∥ ql(z
l
t)

∥ql(zlt)∥2
− sg

[
zlt′

∥zlt′∥2

]∥∥∥∥2

2

(3.4)

3.2.4 Putting it all together

Finally, we optimize the proposed multi-task architecture with a combined loss:

L = Lt + α(Lr,short + Lr,long) (3.5)

where α is a scalar that is used to weigh the contribution of the short- and long-term

contrastive losses. In practice, we find that we simply need to choose α that re-scales

the contrastive losses to the same order of magnitude as the HoA prediction loss.
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3.3 Experiments

3.3.1 Simulated Quadrupeds Experiment

A synthetic dataset of simulated legged robots

To test our model’s ability to separate behavioral factors that vary in complexity and

contain distinct multi-timescale dynamics, we introduce a new dataset generated from

a heterogeneous population of quadrupeds traversing different terrains. Simulation

enables access to information that is generally inaccessible or hard to acquire in a

real-world setting and provides ground-truth information about the agent and the

world state.

Agents. We use advanced robotic systems [88] that imitates 4-legged creatures

capable of various locomotion skills. These robots are trained to walk on challenging

terrains using reinforcement learning [89]. We use two robots that differ by their

morphology, ANYmal B and ANYmal C. To create heterogeneity in the population,

we randomize the body mass of the robot as well as the target traversal velocity. We

track a set of 24 proprioceptive features including linear and angular velocities of the

Future prediction 

Robot Type Robot Velocity

increasing 
velocity

Anymal B

Anymal C

A B
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Figure 3.3: Quadrupeds walking on procedurally generated map. (A) Illustration
showing the two robots (ANYmal B and ANYmal C) walking on the procedurally
generated map, with segments of different terrain types. As the robots traverse
different terrains, the velocity of their joints is tracked and visualized. (B) Long-term
embeddings learned by BAMS. On the left, we overlay the labels for the type of robot
and on the right we overlay the velocity of the robot; we observe a clear organization
of the latents in terms of their velocity and robot type.
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Table 3.1: Linear readouts of robot behavior. For each task, we report the linear
decoding performance on sequence-level and frame-level tasks. Tasks marked with *
are classification tasks for which the F1-score is reported, for the remaining tasks, we
report the mean-squared error.

Sequence-level Tasks Frame-level Tasks
Model Robot Type* (↑) Linear velocity (↓) Terrain type* (↑) Terrain slope (↓) Terrain difficulty (↓)
PCA 99.72 0.069 08.83 0.037 0.790
TCN 99.93 0.102 33.03 0.037 0.080
BAMS 99.96 0.038 39.89 0.033 0.078↰

short-term 100.0 0.094 34.86 0.036 0.079↰

long-term 99.88 0.020 32.39 0.036 0.078

robots’ joints.

Procedurally generated environments. Using NVIDIA’s Isaac Gym [88] simula-

tion environment, we procedurally generate maps composed of multiple segments of

different terrains types (Figure 3.3). We consider five different terrains including flat

surfaces, pits, hills, ascending and descending stairs. We also vary the roughness and

slope of the terrain to control the difficulty of terrain traversal.

Experimental setup. We collect 5182 trajectories of robots walking through ter-

rains. We record for 3 minutes at a frequency of 50Hz. For evaluation, we split the

dataset into train and test sets (80/20 split) and use multi-task probes that correspond

to different long-term and short-term behavioral factors. More details can be found in

subsection 6.2.1.

Results

Results in Table 3.1 suggest that our model performs well on these diverse prediction

tasks. A major advantage of our method is the separation of the short-term and

long-term dynamics, which enables us to more clearly identify the multi-scale factors.

While some of the tasks are represented best in the mixed model, we find that the

linear velocity is more decodable in the long-term embedding, while terrain type

is more decodable in the short-term embedding. We further analyze the formed
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Figure 3.4: Multi-Agent Behavior (MABe) - Mouse Triplets Challenge. (A) Keypoint
tracking approaches are used to extract keypoints from many positions on the mouse
body in a video. (B) Methods are evaluated across 13 different tasks.

representations by visualizing the embeddings in the different spaces. In Figure 3.3-B,

we visualize the long-term embedding space and find that our model is able to capture

the main factors of variance in the dataset, corresponding to the robot type and

the velocity at which the robots are moving. This suggest that in the absence of

labels, the learned embedding can provide valuable insights into how the recorded

population is distributed without the need for annotations. In subsection 6.2.1, we

visualize the extracted embeddings of a single sequence over time. We find that the

long-term embedding is more stable and smooth, while the short term embeddings

reveal different blocks of behavior that change more frequently.

3.3.2 Experiments on Mouse Triplet Dataset

Dataset description. The mouse triplet dataset [74] is part of the Multi-Agent

Behavior Challenge (MABe 2022), hosted at CVPR 2022. This large-scale dataset was

introduced to address the lack of standardized benchmarks for representation learning

of animal behavior. It consists of a set of trajectories from three mice interacting in an

open-field arena. A total of 5336 one-minute clips, recorded from a top-view camera,

were curated and processed to track twelve anatomically defined keypoints on each

mouse, as shown in Figure 3.4.
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Table 3.2: Linear readouts of mouse behavior. We report the BAMS against the top
performing models in the MABe 2022 challenge. All numbers are reported in [90]
except for TS2Vec and T-BYOL, which we produce. The scores show the performance
of the linear readouts across 13 different tasks. Mean-squared error (MSE) is used
in the case of tasks 1 and 2, since they are continuously labeled. In the rest of the
subtasks, which are binary (yes/no), F1-scores are used. The best-performing models
are those with low MSE scores and high F1-scores, are highlighted in bold.

Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
PCA 0.09416 0.09445 51.60 54.65 0.86 0.14 49.27 37.87 12.71 0.21 0.60 0.53 6.65
TVAE 0.09403 0.09442 52.98 56.80 1.07 0.45 59.33 44.77 21.96 0.27 0.83 0.62 10.20
T-BYOL 0.09362 0.09373 60.95 65.05 1.68 0.72 62.48 48.19 18.52 0.35 0.96 0.82 17.77
T-BERT 0.09262 0.09276 78.63 68.84 1.80 0.87 70.22 55.84 30.24 0.51 1.40 1.12 17.27
TS2Vec 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
T-Perceiver 0.09322 0.09323 69.81 69.68 1.57 1.27 60.84 47.81 28.32 0.41 1.16 0.86 16.42
T-GPT 0.09269 0.09384 64.45 65.39 1.73 0.64 69.05 55.78 23.80 0.46 1.12 1.05 17.86
T-PointNet 0.09275 0.09320 66.01 67.15 2.56 4.57 70.68 55.96 21.23 0.84 2.79 2.32 15.61
BAMS 0.09094 0.08989 88.23 72.00 2.74 1.89 67.22 53.43 31.43 0.59 1.61 1.57 18.15↰

short-term 0.09288 0.09294 61.33 66.34 1.80 1.15 66.58 52.60 25.34 0.39 1.09 0.98 16.74↰

long-term 0.09174 0.09037 86.49 70.91 2.10 1.06 61.99 49.12 29.09 0.45 1.32 1.08 13.98

As part of this benchmark, a set of 13 common behavior analysis tasks were

identified, and are used to evaluate the performance of representation learning methods.

Over the course of these sequences, the mice might exhibit individual and social

behaviors. Some might unfold at the frame level, like chasing or being chased, others

at the sequence level, like light cycles affecting the behavior of the mice or mouse

strains that inherently differentiate behavior.

Integrating features across multiple animals. We process the trajectory data to

extract 36 features characterizing each mouse individually, including head orientation,

body velocity and joint angles. We construct the short-term TCN and long-term TCN

encoders to have representation of size 32 each, and receptive fields approximated to be

60 and 1200 frames respectively. We compute the histogram of actions over 1 second, i.e.

L = 30 and use K = 32 bins. We build representations for each mouse independently,

which means that at time t, and for each frame t, we produce embeddings zt,1, zt,2

and zt,3, for each mouse respectively and concatentate the embeddings for all three

individuals to build a joint embedding for evaluation. The model is trained for 500

epochs using the Adam optimizer with a learning rate of 10−3. More details can be
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found in subsection 6.2.2.

Interaction loss. To learn additional features that are useful in predicting

animal interactions for multi-agent settings, we introduce a simple auxiliary loss to

predict the distances between the trio at time t. Our input features do not include

any information about the global position of the mice in the arena, so the model

can only rely on the inherent behavior and movement of each individual mouse to

draw conclusions about their proximity. Thus, we build a network h that takes in the

embeddings of two mice i and j and predicts the distance di,j between them as follows,

Laux = ∥h(zt,i, zt,j)− di,j∥22. (3.6)

This penalty is added to the loss in Equation Equation 4.1 to encourage learning of

shared features across the different individual embeddings.

Evaluation protocol. To evaluate the performance of the model in detecting

frame- and sequence-level behaviors, we compute representations zt,1, zt,2 and zt,3

for each mouse respectively, which we then aggregate into a single mouse triplet

embedding using two different pooling strategies. First, we apply average pooling to

get zt,avg. Second, we apply max pooling and min pooling, then compute the difference

to get zt,minmax = zt,max − zt,min. Both aggregated embeddings are concatenated into

a 128-dim embedding for each frame in the sequence. Evaluation of each one of the

13 tasks, is performed by training a linear layer on top of the frozen representations,

producing a final F1 score or a mean squared error depending on the task.

3.3.3 Results

We compare our model against PCA, trajectory VAE (TVAE) [69], TS2Vec [86],

BYOL [83], and the top performing models in the MABe2022 challenge [74] which

are adapted respectively from Perceiver [18], GPT [15], PointNet [91] and BERT [92].
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All methods are trained using some form of reconstruction-based objective, with both

T-Perceiver and T-BERT using masked modeling. Both T-BERT and T-PointNet

also supplement their training with a contrastive learning objective using positives

from the same sequence. It is also important to note that the training set labels from

two tasks (Lights and Chase) are made publicly available, and are used as additional

supervision in the T-Perceiver and T-BERT models. We do not use any supervision

for BAMS.

Our model achieves a new state-of-the-art result on the MABe Multi-Agent Behavior

2022 - Mouse Triplets Challenge, as can be seen in Table 3.2. We rank first overall

based upon our performance on all tasks, and show impressive boosts in performance

on global sequence-level tasks where we find a 22% improvement in the Strain task and

5% improvement in the Light task. In the frame-level tasks, we remain competitive

with other approaches, and rank 1st on 3 out of 9 of the frame-level subtasks; this is

in contrast to the other top performing model that explicitly models the interaction

between mice by introducing hand-crafted pairwise features. This is outside the scope

of this work, as we do not focus on social interactions beyond predicting the distance

between mice.

We observe that our proposed method results in significant gaps on sequence-level

tasks. In particular, we observe a marked improvement on the prediction of strain

over the second-place model at 78.63%, with BAMS yielding a 10% improvement in

accuracy at 88.23%. These big improvements suggest that we might have identified

and addressed a critical problem in behavior modeling. In the next section, we conduct

a series of ablations to further dissect our model’s performance.

Multi-timescale embedding separation also enables us to probe our model for

timescale-specific features. In Table 3.2, we report the decoding performance with

short-term embeddings and long-term embeddings respectively. We find that sequence-

level behavioral factors are better revealed in the long-term space, while the frame-

43



Table 3.3: Ablations on the Mouse Triplet Dataset. We report the average sequence-
level MSE and F1-score, and the average frame-level F1-score.
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✓ ✓ ✓ 0.090415 80.12 19.85

✓ ✓ 0.093100 68.30 19.46
✓ ✓ 0.090717 78.11 19.45
✓ ✓ 0.092483 73.37 19.52

level factors are more distinct in the short-term space. That being said, decoding

performance is still best when using both timescales.

By default, BAMS is pre-trained with all available trajectory data. We also test

BAMS in the inductive setting, where we only pre-train using the training split (only

1800 out of 5336) of the dataset. Results are reported in subsection 6.2.2. We find

that the performance drop is modest, and that BAMS trained in this setting still

beats all other methods.

3.3.4 Ablations

To understand the role of the different proposed components in enabling us to achieve

state-of-the-art performance, we conduct a series of ablations on the MABe benchmark

that we report in Table 3.3. First, we compare the performance of BAMS when trained

with the traditional reconstruction-based objective (multi-step sequential prediction).

BAMS without the HoA prediction objective, performs comparably with many of the

top-entries, though performance is ultimately improved when using this novel learning

objective. We note that we had to reduce the number of prediction frames to 10, as

the training fails if we go beyond. With our HoA objective, we can use 30 frames,

which strongly suggests that this loss can be stably applied over longer time horizons

when compared to other losses.
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Figure 3.5: Sample frame from the Fruit Fly Groups Dataset.

Next, we analyze the role of the multi-timescale bootstrapping in improving the

quality of the representation. When removing the bootstrapping objective, we find a

2% drop in the sequence-level averaged F1-score, as well as modest drops in frame-level

performance. This suggests that this learning objective may help to resolve global

and intermediate-scale features. We also ablate the multi-timescale component, i.e.

we perform bootstrapping but in the same space, by using a single TCN that spans

the receptive field of the two used originally. This results in sub-optimal performance,

which emphasizes the idea that having different objectives in different spaces is critical

to prevent interference and provide ideal performance. We report additional ablations

in subsection 6.2.2, including an ablation of the interaction module where we find that

it is not critical for good performance.

3.3.5 Experiments on Fruit Fly Groups Dataset

Experimental Setup and Tasks

The fruit fly groups dataset is the second dataset in the MABe benchmark. It consists

of tracking data of a group of 9 to 11 flies interacting in a small dish (Figure 3.5).

Tracking data consists of 19 keypoints on each fly body and wings, and is recorded

at a much higher frame rate compared to the mice (150 vs. 30 fps). Precise neural
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Table 3.4: Linear readouts of fly behavior. We report the average performance of
various models on both frame-level, and sequence-level subtasks.

Model All F1 Seq F1 Frame F1
PCA 42.5 23.0 45.2
TVAE 37.0 22.2 39.0
T-Perceiver 44.8 19.7 48.2
T-GPT 45.8 24.5 48.7
BAMS 48.2 25.4 51.1

activity manipulations are performed on certain neurons which, when activated, induce

certain types of behavior including courtship, avoidance and female aggression [74].

Additionally, the groups of flies are differentiated by various genetic mutations and

tagged by sex. This along with other behavioral factors provide us with 50 different

subtasks, both frame-level and sequence-level, that can be use to evaluate the learned

representations.

In this set of experiments, we are interested in testing whether our proposed method

generalizes to a dataset from another organism, and whether it can work out-of-the-box

with minimal expert intervention. In particular we chose to not extract any features

manually and only use the provided data, we use the default hyperparameters found

in the previous experiment and do not perform hyperparameter tuning, and finally we

do not use an interaction module. Note that we follow the same evaluation procedure

established previously.

Results

We compare our model against PCA, TVAE, TS2Vec, and the top performing models

in the fly challenge: T-GPT, and T-Perceiver. Our model achieves state-of-the-art

performance on the fly dataset, as seen in Table 3.4. BAMS outperforms other models

on both frame-level and sequence-level sub-tasks, and we note a significant boost in

the average frame-level F1 score. This result further demonstrates the generalizability
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of our approach to new datasets and scaling to an even larger numbers of animals.

3.4 Related Work

3.4.1 Animal behavior analysis

Pose estimation and animal tracking. Recently, there has been a recent democ-

ratization of automated methods for pose estimation and animal tracking that has

made it possible to conduct large scale behavioral studies in many scientific domains.

These tools abstract behavior trajectories from video recordings, and facilitate the

modeling of behavioral dynamics. Most pipelines for analyzing animal behavior consist

of three key steps [93]: (1) pose estimation [94, 95, 96, 97, 98], (2) spatial-temporal

feature extraction [99, 70], and (3) quantification and phenotyping of behavior [100,

101, 102]. In our work, we consider the analysis of behavior after pose estimation

is performed. However, one could imagine using our multi-timescale bootstrapping

approach for representation learning in video analysis, where self-supervised losses

have been proposed recently for keypoint discovery [94, 103, 104].

Disentanglement of animal behavior in videos. In recent work [105, 106, 107],

two distinct disentangled behaviorial embeddings are learned from video, separating

non-behavioral features (context, recording condition, etc.) from the dynamic behav-

ioral factors (pose). This has even been applied to situations with multiple individuals,

performing disentanglement on each individual [108]. This is performed by training

two encoders, typically variational autoencoders (VAEs) [109], on either multi-view

dynamic information or a single image. These encoders create explicitly separated

embeddings of behavioral and context features. In comparison to this work, rather

than seperating behavior from context, our model considers the explicit separation of

behavioral embeddings across multiple timescales, and considers the construction of a

global embedding that is consistent over long timescales.
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Modeling social behavior. For social and multi-animal datasets, there are a

number of other challenges that arise. Simba [110] and MARS [58] have similar overall

workflows for detecting keypoints and pose of many animals and classifying social

behaviors. More recently, a semi-supervised approach TREBA has been introduced

[90] for building behavior embeddings using task programming. TREBA is built on top

of the trajectory VAE [69], a variational generative model for learning representations

of physical trajectories in space. In our work, we do not consider a reconstruction

objective but a future prediction objective, in addition to bootstrapping the behavior

representations at different timescales.

3.4.2 Representation learning for sequential data

The self-supervised learning (SSL) framework has gained a lot of popularity recently

due to its impressive performance in many domains [92, 111, 112]. Many SSL methods

are built based on the concept of instance-specific alignment loss: Different views of

each datapoint are created based on pre-selected augmentations, and the views that

are produced from the same datapoint are treated as positive examples; while the

views that are produced from different datapoints are treated as negative examples.

While contrastive methods like SimCLR [111] utilize both positive examples and

negative examples to guide the learning, BYOL [83] proposes a framework in which

augmentations of a sample are brought closer together in the representation space

through a predictive regression loss. Recent work [85, 84, 113, 114] applies BYOL to

learn representations of sequential data. In such cases, neighboring samples in time

are considered to be positive examples of each other, assuming temporal smoothness

of the semantics underlying the sequence. The model is trained such that neighboring

samples in time are mapped close to each other in the representation space. However,

these methods use a single scale to define similarities unlike our method.

Recently, self-supervised methods such as TS2vec [86] learn self-supervised repre-
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sentations for sequential data by generating positive sub-sequence views through more

complex temporal augmentations that can be integrated at instance or local level.

Positive sub-sequences are temporally contrasted with other representations within the

same sequence as well as contrasted with representations of other available sequences.

However, unlike our method, the same space of representations are used for learning

these multi-scale representations. We learn a separate space of representations for

different time scales to encourage disentanglement.

The idea of using multi-scale feature extractors can be found in representation

learning. In [84], a video representation learning framework, two different encoders

process a narrow view and a broad view respectively. The narrow view corresponds

to a video clip of a few seconds, while the broad view spans a larger timescale. The

objective, however, is different to ours, as the narrow and broad representations are

brought closer to each other, in the goal of encoding their mutual information. This

strategy is also used in graph representation learning where a local-neighborhood

of node is compared to its global neighborhood [115, 116]. Our method differs in

that we bootstrap the embeddings at different timescales separately, this is important

to maintain the fine granularity specific to each timescale, thus revealing richer

information about behavioral dynamics.

3.5 Discussion

Behavior is likely to be driven by a number of factors that can unfold over different

timescales. Thus, having ways to model behavior and discover differences in behavioral

repertoires or actions at many scales could provide insights into individual differences,

and help, for example, detect signatures of cognitive impairment [102]. We make steps

towards addressing these needs by proposing BAMS, a novel self-supervised approach

that learns representations for behavioral data at different timescales.

Our analysis on realworld datasets centers on two different datasets in a multi-agent
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benchmark, both with very different dimensionalities and variable tasks. Despite this,

our approach is designed to model a wide range of behaviors, whether it’s individual,

social, structured or naturalistic. More multi-scale and multi-task benchmarks like

MABe are needed in order properly evaluate and guide the development of tools for

general behavior analysis.

Currently, our model has a relatively simple way of (optionally) modeling inter-

actions between animals in the multi-agent setting. Despite this, we show really

competitive performance in multi-agent analysis without using handcrafted interaction

features like T-PointNet or T-BERT [74]. Moving forward, it would be interesting to

develop new ways to learn features of multi-animal interactions, especially in open

environments where animals might come in and out of frame or get occluded.

Our experiments highlight the truly multi-scale nature of BAMS and show that

our method can learn to distinguish global as well as temporally local behaviors.

Currently, we seperate short-term from long-term dynamics through a contrastive loss

and separation of the information into two latent spaces for each scale. Although this

approach appears to be effective, we don’t modify the loss explicitly to disentangle

the two latent spaces. By providing additional incentives for the model to separate

short from long-term dynamics we hope to improve the interpretability of the model.

When extending our model from mice to flies, we found that it was possible to

use the same overall model architecture and hyperparameters, despite the major

differences in datasets and underlying tasks. Thus, given the robustness of the method,

we imagine that it can be utilized in the analysis of other species and even more diverse

types of behavior [117, 118]. By combining our modeling approach with methods for

self-supervised video keypoint discovery [119], we could further extend BAMS to raw

video data without needing the intermediate step of pose estimation. We also look

forward to the opportunities provided by simultaneous recordings of the brain and

behavior [120, 121] and other multi-modal sources of input that could be leveraged to
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further study how behavior unfolds across different timescales.
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CHAPTER 4

LEARNING INVARIANCES IN NEURAL POPULATION ACTIVITY

4.1 Introduction

Self-supervised learning (SSL) methods have made impressive advances on a wide

range of tasks in vision [122, 123, 124, 111, 83, 125, 126], speech [127], graphs [128, 129],

and reinforcement learning [127, 85, 130]. This has been due, in part, to the simple

paradigm of instance-level learning, where a representation is learned by maximizing

the similarity between different transformed “views” of the same sample (positive

examples). Contrastive learning methods compare positive examples to views of other

samples (negative examples) and encourage them to have dissimilar representations

[124, 111, 127, 131], while more recent methods like BYOL [83], W-MSE [132], and

BarlowTwins [133] show how this instance-specific approach can be implemented

without the need for negative examples.

Augmentations are a key component of self-supervised methods; they establish the

invariances learned by the network and control the richness of the learned representa-

tion. Thus, there are many cases where it is useful to go beyond simple augmentations

to integrate more diverse views into learning [134, 135]. At the same time, it can

be challenging to find the right balance between augmentations that both introduce

sufficient diversity and preserve the semantics of the original data. This is particularly

true in new domains, like brain decoding, where we do not have prior knowledge to

guide our search. Here, we ask whether diverse views can be found by looking within

the dataset. Intuitively, other examples drawn from the dataset have the potential to

satisfy both criteria: They offer more diversity, and when chosen correctly, they will

share semantic content with the target sample.
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In this paper, we introduce Mine Your Own vieW (MYOW), a self-supervised

approach for representation learning that looks within the dataset for different samples

to use as positive examples for one another. The idea behind our strategy is to mine

views, or adaptively select other samples that are nearby in the latent space, and

then use these mined views as targets for self-supervision. To integrate both mined

and augmented views into a unified framework, we introduce a novel, cascaded dual

projector architecture that learns to predict across augmented views of the same

sample in the first part of the network, and then to predict across mined views of

different samples through a separate projector/predictor that draws from the first

projector’s output (Figure 4.1).

To first test the method in domains where effective augmentations are well-

established, we apply our approach to computer vision benchmarks, including CIFAR-

10, CIFAR-100 and Tiny Imagenet. On these benchmark datasets, we show that

MYOW is competitive with state-of-the-art methods like BYOL [83] and SimCLR [111]

and in many cases, outperforms these methods. After validating our approach in

the image domain, we then turn our attention to brain decoding from multi-neuron

recordings, a novel application of SSL where diverse augmentations are unknown. We

apply our approach to neural activities from the brains of non-human primates and

rodents, where we show significant improvements over other approaches on two distinct

brain decoding tasks (i.e., movement prediction from motor cortex, and sleep stage

prediction from V1 and hippocampus). These results suggest that nearest-neighbor

prediction can be a very effective tool for self-supervision in new domains where strong

augmentations are not already established.

Overall, we make the following contributions:

• In section 4.2, we introduce MYOW, a new approach for adaptively finding views

from distinct samples in the dataset and using them as positive examples for

one another. We introduce a novel cascaded dual projector architecture that
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Figure 4.1: Overview of our approach. The architecture of the system, shown in
the bottom row, consists of two networks, the online network (top) and the target
network (below). There exists two sources of views, the augmented views block (top,
red) and the mined views block (top, blue). Each type of view is handled by a
dedicated predictor of the corresponding color. During mining, mined views are found
by computing the k-nearest neighbors of the anchor online representation among
the target representations of the pool of candidates. One of the nearest neighbors is
randomly selected to be the mined view. On the bottom right, we illustrate the idea
behind across-sample prediction and show how the two spaces emphasize different
levels of similarity between data points.

builds on BYOL to integrate augmented and mined views without the need for

negative examples.

• After validating our approach on standard datasets used in computer vision, in

subsection 4.3.2, we show how SSL and MYOW can be applied to multi-neuron

recordings. To the best of our knowledge, this is the first time that SSL has

been applied to these types of brain datasets that capture activity at the level of

individual neurons. We establish a set of universal augmentations, that can be

successfully applied to datasets spanning non-human primate, rat, and mouse.

• In our experiments on neural datasets ( subsection 4.3.3), we show that by

linking “semantically close” yet temporally separated brain states, MYOW yields

significant improvement in the decoding of behavior when compared to other
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self-supervised approaches. We also observe that in some datasets, the linear

readouts from our representation layer provide better decoding performance than

supervised methods, suggesting that MYOW can be a powerful tool for reading out

information from neural circuits.

4.2 Mine Your Own vieW (MYOW)

In this section, we introduce MYOW, our proposed self-supervised approach for across-

sample prediction (see Figure 4.1).

4.2.1 Combining augmented and mined views through cascaded predictors

To build a representation, we will leverage the predictive framework introduced in

BYOL [83] which aims to maximize similarity across augmented views. Instead of relying

solely on instance-level augmentations, MYOW finds mined views, or views of different

samples that are close in the latent space. We now provide a detailed overview of our

method starting with the architecture, and then describing our view mining approach

(see subsection 6.3.1 for pseudocode).

View generation. Given a sample s ∈ D from our dataset, we generate two

augmented views x,x′ using transformations t, t′ sampled from a set T . A third view

xm of the same example is also generated, while the mined view x′
m is of a different

sample s′ selected from the dataset. The transformations tm, t
′
m to produce these

views are sampled from a set Tm which is not necessarily the same as T . Different

heuristics can be designed to mine views; in the next section, we present a simple

nearest neighbor strategy, which uses points that are nearby in the representation

space of the network to serve as positive examples for each other.

Dual deep architecture. Both types of views are fed through online and target

networks, parameterized by weights θ and ξ, respectively. The encoders produce

representations y = fθ(x) and y′ = fξ(x
′), which are then passed through a projector
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to obtain z = gθ(y) and z′ = gξ(y
′). Mined views are further projected in secondary

spaces to obtain vm = hθ(zm) and v′
m = hξ(z

′
m). The projections in the target network

act as targets for their respective predictors: qθ forms predictions across augmented

views and rθ forms predictions across mined views.

Loss function. MYOW learns a representation by minimizing both augmented and

mined prediction errors through the following loss:

L = d(qθ(z), z
′)︸ ︷︷ ︸

Augmentation Loss

+λ d(rθ (vm) ,v
′
m)︸ ︷︷ ︸

Mining Loss

, with d(u,ν) = − ⟨u,ν⟩
∥u∥2 ∥ν∥2

, (4.1)

where λ is a weight that regulates the contribution of the mined views in the objective;

in practice, λ has an initial linear warmup period of a few epochs. Just as in BYOL, we

symmetrize the distance between augmented views by feeding x′ and x to the online

and target network, respectively.

We use the same approach for optimizing the online and target networks as proposed

in BYOL. The loss L is optimized only in terms of θ and ξ is updated according to a

moving average of θ. In particular, we update the online and target networks according

to the following:

θ ← optimize(θ,∇θL, η), ξ ← τξ + (1− τ)θ, (4.2)

where τ ∈ [0, 1] is a momentum parameter, and η is the learning rate used to optimize

the weights of the online network. We point the reader to a discussion of the cost

and benefits of different components of this dual network implementation (i.e., stop

gradient, predictor, momentum) [136].

4.2.2 How to mine views

Randomized nearest-neighbor selection approach. MYOW adaptively “mines”

samples in the dataset that are neighbors in the representation space and uses them
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as positive examples. One could imagine many strategies for doing this; we show that

a simple random k-nearest neighbor (k-NN) strategy suffices. Specifically, given an

anchor sample s, we draw a set of L candidate samples and apply transformations

sampled from a set Tm.1 The anchor sample is passed through the online encoder to

obtain its representation ym = fθ(xm), where xm = tm(s) and tm ∼ Tm. The candidate

views {xj} (generated from other samples) are projected in the target encoder’s space

to obtain S = {fξ(xj)}L. The k-nearest neighbors of the anchor representation ym

are computed from this set S and one of these neighbors is randomly selected as the

mined view x′
m.

Controlling stochasticity in mining. There are two main parameters that

must be specified for mining, the number of nearest neighbors (k) and the number of

samples that are considered as candidates for mining (L). Both of these parameters

control the diversity and randomness of which views may be selected. Only a fraction

of the dataset (L/N) is used during the mining process, the smaller this fraction

gets, the more stochastic the mining becomes: at the end of training, each sample

would have seen a large and diverse set of mined views. In the case of the image

datasets we study, we are able to use a pool of candidates of size equal to the batch

size L = B = 512 with k = 1. On neural datasets, we find that slightly higher values

of k are more favorable, suggesting that more stochasticity is helpful in this case. In

all of our experiments, we find that MYOW can be effectively trained using L = B.

Defining which samples can be selected through mining. When mining

views, our algorithm can flexibly accommodate different constraints into our mining

procedure. While not necessary in images, when mining in temporal data (like our

neural examples), we know that temporally close data points can be selected as

augmentations and thus it is useful to restrict the mining candidates to samples that
1In general, the set of transformations that we use for mined views, Tm, can be different from the

set T used for augmented views; particularly in the case of images, we empirically find that the use
of simpler transformations is more favorable.
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are either farther in time from the anchor sample or in entirely different temporal

sequences. Further details on our mining procedure can be found in subsection 6.3.2;

we note that the same global pool of candidates of size L is used for all samples in a

batch.

4.2.3 Memory and computational requirements

In our experiments, the pool of candidates is resampled on-the-fly at each iteration and

thus MYOW does not require a memory bank. While there is an additional, but negligible

(less than 2%), memory overhead due to the k-NN operation, the memory requirements

for training MYOW are not different from BYOL ’s when L ≤ B. This is because augmented

and mined views are forwarded sequentially through the network and gradients are

accumulated before updating the weights. To reduce the extra computational overhead

due to mining, we use the candidates’ target representations instead of their online

representations and avoid an extra forward pass. We empirically find that mining in

either the online or target network leads to similar results (subsection 6.3.6) and thus

use this strategy in practice. In this case, MYOW requires 1.5x computation time when

compared to BYOL. When memory is not an issue, computation time can be reduced

significantly by feeding in all views at the same time. When using a multi-GPU setup,

we distribute the computation of the candidate’s representations over all GPUs and

then have them broadcast their local pools to each other, effectively building a pool

of mining candidates of larger size.

4.3 Experiments

In order to evaluate our approach, we first test it on benchmark datasets used for

image recognition in computer vision. After we establish the promise of our approach

on images, we then focus our attention on a novel application of SSL to decoding

latent variables from neural population activity.
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4.3.1 Image datasets: Comparisons and ablations

Experimental setup. To train our model and other SSL approaches on natural

images, we follow the procedures reported in previous work [111, 136, 137], both

to augment the data and evaluate our models (see subsection 6.3.3). We train the

networks for 800 epochs and use a batch size of 512. When mining, we use an equally

sized pool of candidates L = 512, as well as k = 1 and λ = 0.1. During training we use

an SGD optimizer with a learning rate of η = 0.03 to update the online network, and

a moving average momentum of τ = 0.996 for the target network. For all ResNet-18

and ResNet-50 experiments, we train using 1 and 2 GTX 2080Ti GPU(s), respectively.

We assess the quality of the representations by following the standard linear evaluation

protocol: a linear layer is trained on top of the frozen representation, and the accuracy

is reported on the validation set. Models trained on CIFAR-100 are also evaluated on

CIFAR-20 which aggregates labels into 20 superclasses.

Results on natural images. In our experiments, we compare MYOW with

both BYOL, and SimCLR on CIFAR-10, CIFAR-100 and Tiny ImageNet (Table 4.1).

Consistently, MYOW yields competitive results with these state-of-the-art methods,

and outperforms BYOL even when they share the same random seed and the same

hyper-parameters. We rule out the possibility that MYOW simply benefits from an

effectively higher batch size by conducting experiments where the batch size or number

of epochs used in BYOL is increased by 50% (subsection 6.3.5). More significantly, we

find, for the CIFAR-10 experiment, that MYOW surpasses BYOL’s final accuracy only

after 300 epochs, which, in this case, largely justifies the additional computational

cost of our approach. When we consider a limited augmentation regime (Table 4.2),

we find that MYOW increases its gap above BYOL. Overall, we find that MYOW provides

competitive performance on the vision datasets we tested.

Examining mined views. Figure 4.2 highlights examples of views mined during

training, where we can see the rich semantic content shared within each pair. Even
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Table 4.1: Accuracy (in %) for classification on CIFAR-10, CIFAR-100 and Tiny
Imagenet. We report the linear evaluation accuracies for different architectures and
datasets. For CIFAR-100, we report both accuracies under linear evaluation on
CIFAR-100 and CIFAR-20. Results for SimCLR are reported from [132].

ResNet-18 ResNet-50
Method CIFAR-10 CIFAR-100 CIFAR-20 Tiny ImageNet CIFAR-10 CIFAR-100 CIFAR-20
SimCLR * 91.80 66.83 - 48.84 91.73 - -
BYOL 91.71 66.70 76.90 51.56 92.12 67.87 77.38
MYOW 92.10 67.91 78.10 52.58 93.18 68.69 78.87

Table 4.2: Accuracy (in %) for different classes of transformations. We report the
linear evaluation accuracies for BYOL and MYOW trained on CIFAR-10 using ResNet-18.

Original Remove Grayscale Remove Color Crop only
BYOL 91.71 88.04 87.13 82.10
MYOW 92.10 89.16 89.38 84.82

when mined views are not from the same class, we find other semantic similarities

shared between the views (see the penultimate column where we select a Dachshund

dog and the horse with similar body shape and color through mining). While we do

find that the mining process does not always select positive examples from the same

class (refer to subsection 6.3.6), the presence of these across-class predictions does not

seem to hinder performance.

Ablations. Our architecture integrates mined views through a second cascaded

projector/predictor. On both MNIST and CIFAR-10, we performed architecture

ablations to study the role of our cascaded architecture compared to a single projector

or parallel dual projectors (subsection 6.3.7). Our experiments reveal that all three

configurations (cascaded, single, parallel) lead to an improvement over the BYOL

baseline in CIFAR-10, with the cascaded architecture showing the best performance.

We also perform ablations on the class of transformations Tm used for mined views

(subsection 6.3.6), and find that, when training on the CIFAR-10 dataset, the use of

minimal to no transformations yields the best result.
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Figure 4.2: Examples of mined views from MNIST (left) and CIFAR-10 (right).

4.3.2 Neural datasets: Identifying classes of augmentations

After establishing our method on image datasets, we set out to test our approach on

multi-neuron recordings. As this is the first attempt at leveraging a self-supervised

learning framework for neural data of this nature, our first goal was to establish simple

yet general classes of augmentations that can be utilized in this application.

Neural datasets and decoding tasks. In our experiments, we consider a total

of six neural datasets from both non-human primates and rodents.

1) Reaching datasets. The first datasets we will consider are acquired from the

primary motor cortex (M1) of two non-human primates (NHPs), Chewie and Mihi,

while they repeatedly made reaching movements towards one of eight targets [50]. We

call each repetition a “trial”. Spiking activity of d single neurons is recorded during

each reach trial, Figure 4.3-A shows some instances of the trajectory of the joystick

during movement. Data was collected at two different dates (77 days apart for Chewie,

3 days apart for Mihi), resulting in two datasets per primate, each targeting a different

set and number of neurons in the same part of M1. The activity of neurons was

spike-sorted and binned into 100ms intervals to generate around 1.3k d-dimensional

vectors per dataset. To measure representation quality, we will define our target

downstream task as the decoding of the intended reach direction from the neural

activity during the movement.
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2) Sleep datasets. The second datasets that we will consider are collected from

rodent visual cortex (V1) and hippocampus (CA1) during free behavior over 12 hours

[138]. Here, neural activity was binned into 4s intervals to produce firing rates for 42

and 120 single neurons, for a rat and mouse, respectively. To measure the quality of

representations learned, we will define our downstream task as the decoding of the

arousal state of the rodent into one of three classes: rapid eye movement (REM) sleep,

non-REM sleep, or wake [139, 138].

Experimental setup. For all datasets, we use multi-layer perceptrons (MLPs)

as encoders with a representation size of 64 and 32, for primate and rodent data

respectively. We train the networks for 1000 epochs and use a batch size of 512. When

mining we use an equally sized pool of candidates L = 512, as well as k = 3 and

λ = 0.1. During training we update the online network using AdamW with a learning

rate of η = 0.02 for primates and η = 0.001 for rodents and weight decay of 2 ∗ 10−5,

and use a moving average momentum of τ = 0.98 for the target network. Each dataset

is temporally split into (70/10/20%) train/validation/test sets. More details on the

datasets and experimental setup can be found in subsection 6.3.4.

Augmentations for spiking neural data. While self-supervised approaches

have not been applied to the multi-neuron recordings that we consider, we take cues

from other domains (video, graphs), as well as previous work on electroencephalogram

(EEG) data [140, 141], to define simple classes of augmentations for our datasets.

Specifically, we consider four different types of augmentations: (i) Temporal Jitter–

stochastic backward or forward prediction of nearby samples within a small window

around the sample, (ii) Dropout–masking neurons with some probability, and (iii)

Pepper–sparse additive noise, and (iv) Noise–additive Gaussian noise.

We test the inclusion and combination of these different augmentations, first on

our BYOL backbone which uses augmented views only (Figure 4.3-B). While we find

that temporal jitter alone is insufficient to drive learning, when we combine both
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jitter and dropout, we see a substantial increase in decoding accuracy and qualitative

improvements in the resulting representations. In this case, our baseline SSL method,

BYOL, quickly starts to create meaningful predictive relationships between data, as

evidenced by our decoding results and qualitative evaluations of the representations

(subsection 6.3.10). As we include additional augmentations (Noise + Pepper), the

performance increases further, but by smaller margins than before. In general, we

see these same trends observed throughout our remaining primate datasets and in

our experiments on rodent (see subsection 6.3.10), suggesting that these classes of

transformations are good candidates for building SSL frameworks for neural activity.

After establishing a good set of simple augmentations, we then integrate mined

views with MYOW (Figure 4.3-B, blue). In this case, we can interpret mined views as

nonlocal brain states that are not temporally close but can be semantically similar. For

instance, in our reaching datasets, MYOW will mine outside of the current reach and look

for other samples that it can use to build a more unified picture of the brain states as

they evolve. Through combining simple augmentations with nonlocal samples with

MYOW, we provide an impressive boost in performance over BYOL on this application.

Table 4.3: Accuracy (in %) in the prediction of reach direction from spiking neural
activity.

Chewie-1 Chewie-2 Mihi-1 Mihi-2
Acc Acc Acc Acc

Supervised 63.29 77.22 72.29 81.51 63.64 79.02 61.49 68.44
pi-VAE 65.63 82.62 60.60 74.64 62.44 77.12 63.26 77.58
AE 48.40 67.51 46.79 65.84 50.94 68.03 55.19 74.98
RP 59.21 78.10 50.69 60.01 57.78 76.03 53.76 71.34
TS 60.16 78.76 49.48 63.55 59.23 76.98 54.10 71.65
SimCLR 61.36 79.40 51.62 65.01 59.41 77.82 56.29 74.57
BYOL 66.65 78.17 64.56 77.22 72.64 85.14 67.44 82.17
MYOW 70.54 79.99 72.33 84.81 73.40 85.58 71.80 81.96

4.3.3 Neural datasets: Examining and comparing representation quality

Next, we will test the representational quality of our model by asking how well relevant

behavioral variables can be linearly decoded from the learned representations.
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Figure 4.3: (A) Sketch of a primate performing a reach task with sample joystick
trajectories depicting the center-out reach movement. (B) Increase in decoding
accuracy of BYOL and MYOW as we progressively introduce new augmentations. (C)
Visualization of the learned representations obtained for the two primates Chewie and
Mihi when different SSL methods are applied (embeddings are obtained via t-SNE).
This shows how MYOW reveals the underlying structure of the task, as clusters are
organized in a circle.

Decoding movements from the primate brain. In the reaching datasets that

we consider here, there is a direct connection between the neural state (brain activity

across many neurons) and the underlying movements (behavior). Thus, we wanted

to assess the quality of the representations learned from these datasets by asking

how well we can predict the reach direction from neural activity. If we have a good

representation, we should be able to better separate reach direction from the neural

activities. To quantify this, we will use a linear readout to predict the cosine and sine

of the reach direction, and report the classification accuracy. We also introduce a

slightly relaxed accuracy metric that we call the (akin to Top-k), which has a larger

true positive acceptance range, as can be seen in Figure 4.3-A. (see subsection 6.3.4

for a formal definition).

We compare our approach with several self-supervised methods, including state-of-

the-art methods BYOL and SimCLR, as well as two widely used self-supervised tasks
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recently applied to EEG data called Relative Positioning (RP) and Temporal Shuffling

(TS) [142]. RP trains the network by classifying whether two samples are temporally

close, while TS takes in three samples and learns whether they are in the right order

or if they are shuffled. In addition to these self-supervised methods, we also train

a Multi-layer Perceptron (MLP) classifier (Supervised) using weight regularization

and dropout (in nodes in intermediate layers in the network), an autoencoder (AE),

and a state-of-the-art supervised approach for generative modeling of neural activity

(pi-VAE) that leverages behavioral labels to condition and decompose the latent space

[46].

We find that MYOW consistently outperforms other approaches and that contrastive

methods that rely on negative examples (SimCLR, RP and TS) fall behind both MYOW

and BYOL. We also find that MYOW generalizes to unseen data more readily than others;

in some cases, beating supervised approaches by a significant margin, with over 10% on

both Mihi datasets. When we consider , our method scores above 80% on all datasets,

outperforming the supervised baseline by over 10% on Mihi-2. These results are even

more impressive considering that we only tune augmentations and hyperparameters

on Chewie-1 and find that MYOW consistently generalizes across time and individuals.

We thus show that by integrating diverse views (across trials) through mining into our

prediction task, we can more accurately decode movement variables than supervised

decoders.

When we visualize the learned representation in Figure 4.3-C, we notice that MYOW

organizes representations in a way that is more reflective of the global task structure,

placing reach directions in their correct circular order. In contrast, we find that in

both individuals, other methods tend to distort the underlying latent structure of the

behavior when visualized in low-dimensions ( subsection 6.3.11). We conjecture that

across-sample predictions (including those across different reach directions), may be

responsible for capturing this kind of higher-level structure in the data.
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Figure 4.4: Visualizations of raw and latent spaces (using t-SNE) of 12 hour recordings
from mouse (CA1) during free behavior, including sleep and wake. One variable of
interest is the arousal state (REM, nREM, Wake).

Table 4.4: F1-score (in %) in the prediction of arousal state from spiking neural
activity.

Rat-V1 Mouse-CA1
Supervised 86.34 93.01
pi-VAE 73.10 82.48
AE 34.17 57.73
RP 82.93 82.12
TS 82.45 81.93
SimCLR 81.03 81.94
BYOL 85.42 93.24
MYOW 88.01 93.70
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Decoding arousal states from the rodent brain during free behavior. Next,

we applied MYOW to datasets from the rodent cortex and hippocampus, where we

test our ability to decode arousal states (REM, nREM, Wake) from the learned

representations. Despite the strong class imbalance, the trends are similar to that of

our earlier experiments, with MYOW providing robust performance, exceeding that of

the supervised baseline, and outperforming other self-supervised methods.

In these datasets, the animal is “untethered” and can roam around in its cage

without any task or explicit instructions. In these free-behaving conditions, we find

a great deal of variability in the latent state beyond the coarse labels that we have

access to. When we visualize the representation learned by MYOW in Figure 4.4, we find

that the network separates different parts of the behavior space, revealing subspaces

of neural states that are otherwise unobservable when examining the embeddings of

the raw data.

4.4 Related Work

Self-supervised learning. SSL aims to learn representations of unlabeled data

that are useful for downstream tasks. While early work utilized proxy tasks for self-

supervision [143, 144], instance discrimination-based SSL methods [111, 124, 83, 133]

have emerged as the state-of-the-art for representation learning, showing tremendous

success and moving towards closing the gap with supervised learning. Conceptually,

these approaches treat each instance in the dataset as its own class. A given sample is

transformed to create distinct positive views, which are encouraged to be close in terms

of their representations, while negative pairs are pushed apart. BYOL [83], SimSiam

[136], and more recently BarlowTwins [133] move away from the explicit contrastive

framework and the reliance on negative samples by employing different strategies

that avoid collapse in the representation. The precise mechanisms underlying the

success of BYOL [83] are still unclear and have been the subject of recent theoretical
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and empirical studies [145, 146].

Connections to mining hard negatives in contrastive learning. In con-

trastive learning, it is a commonly held belief that the use of large numbers of negative

examples is necessary to introduce enough “hard negative examples” into learning.

Thus, there has been interest in nearest-neighbor sampling and mixing to define

hard negative examples [147, 148, 149] instead of just relying on larger batch sizes.

Interestingly, the mined views in MYOW can be considered as harder positive examples,

but are different from their negative counterpart in that they define a new type of

views.

Clustering-based SSL and local aggregation (LA). Clustering-based repre-

sentation learning methods are different from instance-specific contrastive methods

in that they do not compare pairs of samples directly, but do it through the use of

prototypes or pseudolabels. DeepCluster [150], for example, uses k-means assignments

as pseudolabels for training. LA [151] leverages neighbors to guide learning by defining

two sets of neighbors, close and background neighbors, encouraging close neighbors

to be nearby while pushing them away from a set of background neighbors. More

recently, SwAv [152] simultaneously learns a set of prototype vectors and enforces

consistency between cluster assignments of two positive views.

Like many of these methods, we select samples with similar embeddings and use

them to adaptively link data samples in the latent space. However, instead of using a

small number of prototypes to cluster the representations, we use neighbors in the

representation space as positive views for prediction and do not force any kind of

explicit clustering. Moreover, because our model is built on BYOL, we do not require

negative examples and also avoid the introduction of more complex distance measures

to establish contrast (e.g., close vs. background neighbors).

Applications of SSL in neuroscience and biosignal analysis. Previous work

in self-supervised and contrastive learning for sequential data often leverages a slowness
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assumption to use nearby samples as positive examples and farther samples as negative

examples [127, 153, 154, 155, 156]. Contrastive predictive coding (CPC) [127] further

leverages the temporal ordering in sequential data by building an autoregressive (AR)-

model that predicts future points given previous observed timesteps. In reinforcement

learning, PBL [85] also uses a similar strategy, however, they show similarly to BYOL

that negative examples are not needed to learn a good representation.

In [156], the authors test different temporal contrastive methods ( RP, TS and

CPC) on EEG datasets. They find that, despite the additional complexity afforded by

TS and CPC, these approaches perform similarly to RP in their experiments on sleep

decoding from the human brain. In [140], they propose a contrastive learning method

for EEG that also leverages subject-level information to build representations. Our

approach shares similarity with these existing approaches in how we build augmented

views for neural data. However, MYOW goes beyond these temporally local predictions

to incorporate nonlocal time points as positive examples. We show that non-local

predictions across samples can be used to significantly boost performance for our

neural datasets, and thus we expect that nearest-neighbor based approaches could

also be used to extend these previous applications of SSL in neuroscience.

4.5 Conclusion

This chapter introduces a new method for SSL that integrates diverse across-sample

views into learning through a novel cascaded architecture. We show that our approach

can be used to learn meaningful representations on a variety of image and neural

datasets.

This chapter provides an important first step towards applying self-supervised

methods to learn representations of neural activity. For these datasets, we establish

general classes of augmentations and study the impact of these augmentations on

diverse neural recordings. Our results in this domain are compelling: we typically
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obtain better generalization than supervised methods trained with dropout and

weight decay. Through the inclusion of temporal structure into our framework and

architecture, we may be able to improve this approach even further and capture

dynamics over longer timescales.

In our application to spiking neural data, we demonstrate that both dropout

and temporal augmentations are necessary for building meaningful representations of

different brain states. Similarly in neural circuits, neurons are unable to send direct

signals to every other neuron in a downstream population; thus, target areas receiving

signals may need to predict future brain states from partial information [157]. Our

results suggest that it may be fruitful to try to understand how brains may leverage

dropout to build predictive representations, and that a theoretical understanding of

SSL might yield insight into these processes.
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CHAPTER 5

AFTERWORD

This thesis has presented a series of novel methodologies and frameworks aimed at

advancing our understanding of the brain through the integration of diverse and

heterogeneous datasets. The main contributions of this work include the development

of POYO, a scalable framework for neural population decoding that can generalize

across different sessions, subjects, and species; BAMS, a self-supervised approach

for multi-timescale behavior representation learning, which successfully captures the

complex dynamics of behavior across different contexts; and the introduction of

MYOW, a self-supervised learning technique designed to extract robust and invariant

representations from neural population activity.

By addressing challenges such as the variability of recorded neural populations

and the limitations posed by both labeled and unlabeled data, this thesis contributes

to the ongoing efforts to create more comprehensive models of brain function. The

approaches presented here offer new tools that can enhance our understanding of the

brain.

It is my hope that this thesis contributes to the democratization of AI tools for

neuroscientists, providing them with the advanced capabilities needed to explore and

uncover new insights in the brain. By making these tools more accessible and effective,

we can empower researchers to push the frontiers of science, leading to breakthroughs

that enhance our understanding of the brain and, ultimately, improve human health

and well-being.
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CHAPTER 6

APPENDIX

6.1 A unified scalable framework for neural population decoding

6.1.1 Additional Model Details

Rotary position encoding

Rotary Position Embeddings (RoPE) are used to incorporate relative positional

information into transformer models in a memory and compute efficient manner[19].

Unlike absolute position embeddings which are added or appended to the input

embeddings, these are directly incorporated in the attention mechanism.

First, we define a 2 × 2 rotation matrix R2×2(t, T ) for a given timestamp t and

time-period T :

R2×2(t, T ) =

cos(2πt/T ) − sin(2πt/T )

sin(2πt/T ) cos(2πt/T )


R2×2(t, T ) provides a time/positional encoding with a time period T . Intuitively,

the sinusoidal values in this rotation matrix can help the model learn and distinguish

variations in timestamps at a timescale T .

Given the head dimension of the attention block D, we create a D × D rotary

embedding matrix R(t) for a timestamp t by constructing a block-diagonal matrix of

rotation matrices R2×2, where the time-periods are varied logarithmically between
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Tmin and Tmax

R(t) =



R2×2(t, T0) 0 · · · 0

0 R2×2(t, T1) · · · 0

...
... . . . ...

0 0 · · · R2×2(t, TD
2
−1)


Given D, Tmin, and Tmax, we generate Ti by the following equation:

Ti = Tmin

(
Tmax

Tmin

)2i/D

In our models, Tmin and Tmax were set to 1ms and 4s respectively.

This rotation matrix is incorporated into the attention mechanism by replacing

the attention score calculation with the following equation:

aij = softmax
(
(R(ti)qi)

T (R(tj)kj)
)

Since R(ti)
TR(tj) = R(tj− ti), the attention score aij depends only on the relative

timing between the query and key tokens. This is what makes RoPE relative in nature.

What is explained above has been introduced in [19], and use successfully in many

models [18]. In our experiments, we found an interesting extension of RoPE. In

addition to incorporating RoPE in calculating the attention scores, we also incorporate

it in the weighted-summation of values inside the attention mechanism. We do this to

encode the relative timing between values and queries in the output of the attention

block. A direct, but computationally inefficient, way of doing so would be:

zj ← zj +
∑
i

aijR(ti − tj)vi

This is inefficient since it requires us to explicitly compute R(ti − tj) for all N2
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values of (ti− tj). We use the fact that R(ti− tj) can be factorized as R(−tj)R(ti) to

reach the following, much more efficient, implementation:

zj ← zj +R(−tj)
∑
i

aijR(ti)vi

That is, we first apply rotation matrices R(ti) to all values vi before passing them to

as inputs to the attention block. Then we apply the rotation matrices R(−tj) to its

outputs.

This value-rotation mechanism captures relative-timing information more explicitly

in the output of the attention block, allowing the feedforward network to take advantage

of timing information. In the absence of this mechanism, the only way timing

information is added to the latent tokens is through the attention scores. We observed

in early experiments that our model performed better with value-rotation enabled for

the input cross-attention and all self-attention layers.

As discovered in the Perceiver framework [13], we observed an improvement in

performance upon rotating only half of the head dimensions. That is, half of the R2×2

matrices in R were replaced by 2× 2 identity matrices.

Time-based context window

We consider an arbitrary window of time [t, t+ T ], meaning that we do not use the

trial structure when training our model. In our experiments, we set T equal to 1

second. At inference time, we use a sliding window of step 500ms and average the

predicted output in overlapping segments.

In language models, and more generally transformer-based models, the context

window is defined with respect to the number of tokens. The neural data modality is

a bit more complex, as the number of spikes scales with the number of units: Across

multiple datasets, we record a variable number of units, ranging from tens of units
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to hundreds of units. Defining the context window with respect to number of tokens

will result in a variable time duration, long for small populations and short for larger

ones. Our context window is defined with respect to time (fixed to 1s), each sequence

will have a variable number of tokens (M). When creating batches, we pad to the

largest sequence in the batch, and appropriately use an attention mask in the first

cross-attention layer. GPU hardware is optimized to process fixed-size tensors, to

make computation more efficient, we introduce a distributed training load balancing

mechanism, which deals with variable-length input sequences (paragraph 6.1.1).

Further details on tokenization

Delimiters. When extracting the spike data in a window of time [t, t + T ], we

include delimiters for each unit, indicating to the model that we are tuning into the

activity of that unit between times t and t+ T . This choice is important because: 1)

we are using relative position encoding, so the beginning or the end of the window

is not clear, and 2) our tokenization only captures activity and not inactivity. If we

consider a unit that is inhibited and does not fire in that window of time, the model

would be unaware of the presence of that unit, unless we add [START] and [END]

tokens. We learn two embedding vectors for these delimiters xstart and xend. For each

unit in the population, we add these two tokens with embedding equal to the sum of

the delimiter embedding and the unit embedding, and assign each token timestamps t

and t+ T respectively.

Latent tokens. Recall that we divide the latent tokens into groups of n and spread

each group uniformly over the context window. Specifically, we use a total of 256

latent tokens and divide them into groups of 8, this means that there will be 32 tokens

that share the same timestamp. We experiment with weight-sharing, where we set

the learned latent tokens in the same group to have the same weights (e0, . . . , e31 in
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Fig Figure 4.1). This means that tokens in the same group (size 8) will have the same

embedding z0,i = e(i mod 32), but different timestamps (tl0, . . . , tl7 in Fig Figure 4.1). We

believe this is a reasonable inductive-bias to architecturally enforce since, intuitively,

we want all sets of latent tokens that share a timestamp to query the spike tokens in

the exact same manner, just with a different timestamps. These tokens will evolve

independently once the information is pulled from the input space (after the first

cross-attention).

Training details

The model is trained using the LAMB optimizer [25] with weight decay. The learning

rate is held constant, then decayed towards the end of training (last 25% of epochs),

using a cosine decay schedule. Single-session models are trained on a single GPU with

a batch size of 128 while large models are trained with 8 GPUs with a total batch

size of 1400. Note that we didn’t see any benefits in increasing the batch size when

training single-session models.

Compute The large models are trained on a machine with an AMD EPYC 7452

32-Core Processor and 8 Nvidia A40 GPUs (48Gb memory), POYO-mp was trained for 2

days, and POYO-1 was trained for 5 days (both for a total of 400 epochs). Single-session

models are trained with a single Nvidia GeForce RTX 3090 GPU, and take less than

an hour to train. Finetuning models is also done with a single GPU. Unit identification

converges very quickly and takes less than a minute on a single GPU or a few minutes

on the CPU.

Data augmentation Previous work [45, 156] explores the use of augmentations

when training neural population models. In our experiments, we use the unit dropout

augmentation which randomly samples a subset of the population. We set a minimum

population size of 30 for this augmentation to ensure that it is not too destructive (note
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that our model is still trained with any number of units, this limit is only imposed for

the augmentation). We did not explore the use of other augmentations, but believe it

could be a promising direction to further improve the capabilities of the model.

Loss We train our model using a mean-squared error loss over the hand velocity

sequence. We normalize the velocity data using z-scoring at the lab level, this means

that all velocity data in datasets from the same lab is rescaled using the same scalar.

Dealing with variable sampling rate. When training on mixtures of datasets

from multiple labs, any given batch will contain behavior sequences that have different

sampling rates. In a window of 1s, some sequence will have more timepoints over

which we will evaluate the MSE compared to other sequences. To avoid the over-

representation of samples that simply have a high sampling rate, we evaluate the error

on a randomly sampled 100 timepoints (these points are randomly sampled at each

pass).

Weight in training mix. While behavior during random target tasks can be more

complex and noisy, behavior during center-out reaching tasks is more structured,

the monkey usually gets a preparation phase, where the movement can be planned

[20]. The latter task has been studied extensively for that reason. Knowing that

neural activity is very salient during center-out reaching, we increase the weight of the

prediction loss during the reaching segments by a factor of 5. The idea of over-weighing

samples of "good quality" is not novel and is commonly used when training language

models [15].

Load Balancing We distribute our training over multiple GPUs. Note that, in our

experiments, the input sequence length (M) can vary anywhere between 1k and 20k

tokens. Because of the variability in the length of the input sequences, we distribute
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sequences that have close length to same GPU node.

We now provide further details on our load balancing strategy:

• Each GPU node has a local batch size. A GPU that is assigned large sequences

will have a smaller local batch size than one that is assigned shorter sequences.

• We create a number of data buckets equal to the number of GPUs. Each bucket

i is assigned sequences that are of length M ∈ [M i
min,M

i
max], and a local batch

size Bi.

• We select these parameters in such a way that we effectively utilize all available

compute capacity, and minimize the amount of padding used.

Evaluation Details

During training, we train on any 1s segment of the recording, but at evaluation we

report the decoding performance using the same evaluation strategy used in previous

work [24, 10]: for center-out reaching datasets, we report the decoding score during the

reaching movement (only when the trial is completed successfully), for random target

datasets that are trialized (hold period followed by 3/4 random reaches), we report

the decoding score during the reaching as well, and finally for all other continuous

random target datasets, we report the decoding score for all segments. Note that none

of the segments used for testing are seen during training.

Fine-tuning Details

When finetuning the model, we perform gradual unfreezing of the weights. For the

first few steps, we optimize the unit embeddings and the session embedding only (unit

identication) and then unfreeze the rest of the weights. We use the LAMB optimizer

with batch size 128, learning rate 10−4 and weight decay 10−4. We use the exact same

hyper parameters and finetuning process for all experiments we report. This strongly
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Figure 6.1: Diversity of neural recordings used to train POYO. We visualized the array
locations for all of the datasets used in our current study. POYO-mp is trained on
recordings from PMD and M1 (CL, CR, M, Ja) and POYO-1 is trained on recordings
from (CL, CR, M, Ja, I, L, Mi) spanning PMD, M1, and S1 across both hemispheres
and in seven animals.

suggests that our method is general, and easy to adapt to new data, without the need

for expert neural network training knowledge, or expensive hyperparameter search.

6.1.2 Datasets

To train and evaluate our framework, we curated a large number of open and publicly

available datasets that represent a range of neural and behavioral recording platforms.

Datasets used for training

Datasets used to train POYO-mp. To build our first large-scale model (POYO-mp), we

acquired 100 sessions of unique recordings from three non-human primates performing

two different movement tasks that were previously studied in four publications [158,

159, 20, 51]. We make these datasets publicly available on the DANDI open repository

[26]. In all of these datasets, a nonhuman primate is seated in a primate chair and

executes movements using a custom 2-D planar manipulandum to control a cursor on
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a computer screen. They performed one of two tasks within a session.

• Center-out Task (CO): They performed a standard center-out reaching task

involving eight outer targets arranged around a circle with a radius of 8 cm. The

monkeys were required to move to the center target, wait for a variable hold

period, and then move to one of the outer targets upon receiving an auditory

go cue. The task aimed to study neural activity during movement planning,

preparation, and execution.

• Random Target Task (RT): The setup is similar, the targets are not arranged

around a circle but are randomly placed. The monkeys were required to move

between 4 targets upon receiving an auditory go cue.

After extensive training, the monkeys were implanted with chronic multi-electrode

arrays in the primary motor cortex (M1) and the dorsal premotor cortex (PMd).

Neural activity was recorded using a Blackrock Cerebus system, and the data was

manually processed offline to identify single neurons. To ensure only independent

channels were included, steps were taken to identify and disable potential candidates

with high crosstalk and to exclude cells with a high percentage of coincident spikes.

Datasets used to train the multi-lab, multi-session model (POYO-1). When

training POYO-1, we acquire more data as shown in Table 2.1, adding all of the datasets

outlined from Churchland et al., [21], Makin et al., [22], and Flint et al., [23]. We

still hold out the 12 sessions from Monkey T, 2 sessions from Monkey C, and the two

Neural Latents Benchmark (NLB) [24] datasets from training.

As depicted in Figure 2.5, instead of using a manipulandum like in the previous

experiments, these new datasets use a touch screen and have different sampling rates

for their behavioral outputs. In addition, in the Churchland, et al. datasets, they

use threshold crossing based processing rather than applying spike sorting to identify

single units. We refer the reader to the listed publications for more details about how
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these datasets were collected.

We would like to reiterate that there are major differences in the way the datasets

were collected. Yet, in spite of this variability, it is important that our method works

without having to standardize the datasets across sites further and apply specialized

techniques to one dataset but not other. Thus we did not attempt to homogenize

or standardize the data. The only processing that we perform is on the behavior to

clip outliers in the behavior based upon times of high acceleration. We use a simple

threshold heuristic to avoid training on periods with extremely high acceleration.

This means that:

1. We do not filter units based on a presence ratio, or reject multi-units.

2. We do not re-apply the same spike sorting algorithm on all datasets, and use

the data as is. In [21], the spiking events obtained through threshold crossings

(i.e. all units are multi-units), and in [22], we have both threshold crossing units

and spike sorted isolated single units, and we use both. Each algorithm used in

each lab was tuned differently, but we consider this a good example of diversity

that a general model needs to deal with.

3. We do not resample or process the velocity timeseries.

Minimizing the amount of processing needed to integrate new datasets into our

model is key for more easily scaling to more datasets, and also providing an accessible

model that the community at large can use out of the box, without having to adapt

to a specific standard.

Datasets for evaluation and fine-tuning

In addition to holding out 20% of the data from each session, we hold out all sessions

from Monkey T (6 CO, 6 RT). We also use two datasets from the Neural Latents

Benchmark [24], MC-Maze and RTT. The Maze dataset consists of recordings from
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primary motor and dorsal premotor cortices of a monkey performing reaches with

instructed delays to visually presented targets while avoiding the boundaries of a

virtual maze. This dataset offers a variety of behavioral configurations, with each

configuration using a different combination of target position, number of virtual

barriers, and barrier positions, resulting in a variety of straight and curved reach

trajectories. With thousands of trials, the Maze dataset allows for a rich investigation

into the structure of population activity, while its instructed delay paradigm enables

a clear separation of neural processes related to preparation and execution. On the

other hand, the RTT dataset introduces different modeling challenges, as it contains

continuous, point-to-point reaches that start and end in various locations, have highly

variable lengths, and few repetitions. We report the performance of our models on

the same segments of data used to evaluate models in the NLB benchmark.

6.1.3 Additional Results

Comparison with single-session baselines

In our comparisons in Table 2.2, we compared POYO against existing baseline models

that are commonly used for neural decoding [27]. In particular, we applied a Wiener

Filter (WF), Feed Forward Network (MLP), and a Gated Recurrent Unit (GRU).

These models predict the behavior at each timestamp t given a history window of

neural activity [t− T, t]. For the NLB datasets, we also compare with Auto-LFADS

[28], an unsupervised approach that can be used to obtain single trial smoothed rate

estimates for a population of neurons before applying a linear layer on top of the

inferred rates to obtain an estimate of the behavior. While this model isn’t designed

for decoding per se, it is frequently used for denoising for BMI decoding applications.

For the NLB, we use a 5 ms binning of the neural activity for training models

and for evaluation of the behavioral output as this is the finest resolution used in the

benchmark. For the rest of the MP datasets, we use a 10 ms binning rate for the
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neural data and behavior as this corresponds to the behavior sampling rate for these

datasets.

The hyperparameters we used for training our single-session POYO model can be

found in Table 6.1.

Table 6.1: Hyperparameters used for training all POYO single-session models

Hyperparameter Value
Embedding Dimension 128

Head Dimension 64
Number of Latents 128

Depth 6
Number of Heads 8

FFN Dropout 0.3
Linear Dropout 0.3

Attention Dropout 0.3
Weight Decay 1e-4
Learning Rate 4e-3

Batch Size 128

Robustness of Unit-identification

Unit-identification, introduced in subsection 2.2.5, can be seen as an approach for

identifying units from a new dataset. To evaluate the robustness of this process, we

ran unit-identification on a session that was already seen during pre-training. We

test whether finetuning on this “new” set of units, will map them close to their true

embedding (found during pre-training). We use our largest model, POYO-1 , start with

randomly initialized unit embeddings and run unit-identification.

We perform this experiment on two different animals. In Figure 6.2, we show the

evolution of unit-embeddings during training. To compare the newly calibrated set

of units with its pre-trained version, we normalize the unit-embeddings and report

the cosine similarity averaged over the set of units. Note that normalization is done

because POYO ’s first cross-attention layer applies layer norm to these embeddings. We

also report the “unit identification accuracy” which we define as the ratio of tuned unit
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embeddings that have their true unit embedding as their nearest neighbor. Results

for these experiments are present in Table Table 6.2.

Table 6.2: Unit re-identification results. Cosine-similarity measure is averaged over all
units in a dataset. Accuracy is measured for 1-nearest-neighbor classifier.

Dataset Num of Units Unit-Id Accuracy Unit-Id Cosine-Similarity
Monkey C, CO, 2013/10/03 73 1.000 0.845
Monkey M, CO, 2014/02/03 116 0.966 0.802

Overall, this analysis suggests that the unit-identification approach is robust and

reliable for identifying units. We believe that understanding the functional similarities

of units that are mapped close to each other in the unit embedding space will be an

interesting avenue for future work.

Figure 6.2: Evolution of the unit embeddings with unit-identification on sessions
from two different animals. From left to right, the finetuned embeddings (orange)
are visualized at 10, 100, and 400 epochs, relative to their true embedding in the
pre-trained model (blue).
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Hyperparameter sensitivity

When initially training the single-session models, we selected a subset of datasets (out

of the 100 sessions) and performed a random hyperparameter search and selected

the set of hyperparameters with the best performance on the validation set. These

experiments quickly revealed that the model was very stable to a wide range of

hyperparameters. In Figure 6.3, we report some examples of this for two sessions.

We perform 300 runs for each session, then report the average performance for each

hyperparameter.

Given these findings, we selected the best set of hyperparameters for the subset

and used the same parameters when training all of the 100 single-session models that

we study in Figure 2.2.

Figure 6.3: Single-session model performance for a wide range of values for different
hyperparameters. The R2 score is reported on the validation sets for both datasets.

6.2 A self-supervised approach for multi-timescale behavior representation

learning

6.2.1 Experimental details: Simulated Quadrupeds

Data generation

Simulation details. We record a total of 5182 trajectories. 2756 were generated

for robots of type ANYmal B and 2426 sequences were generated for robots of type
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ANYmal C. These are quadruped robots, which means that they have four legs. Each

leg has 3 degrees of freedoms - hip, shank and thigh. The position and velocities

of these degrees of freedom for all 4 legs were recorded. This results in 24 features

for each robot. Robots are generated while traversing an procedurally generated

environment with different terrain types and traversal difficulty, as show in Figure 6.4.

We only keep trajectories that correspond to a successful traversal.

Figure 6.4: Visualization of different simulated environments. (A) Screenshots from
the simulator showing a robot walking down some stairs, and a view of the terrain
landscape. (B) Visualization of the different terrain sections, characterized by a terrain
type and different levels of difficulty. Terrain are made more difficult to traverse by
either making them more rough or have steeper slopes.

Tasks. To evaluate the representation quality of our model, we use multi-task probes

that correspond to different long-term and short-term behavioral factors.

• Robot type: the robot can either be of type "ANYmal B" or "ANYmal C".

These robots have the same degrees of freedom and tracked joints but differ by

their morphology. This is a sequence-level task.

• Linear velocity: the command of the robot is a constant velocity vector. The

amplitude of the velocity dictates how fast the robot is commanded to traverse

the environment. A higher velocity would translate into more clumpsy and more

risk-taking behavior. This is a sequence-level task.

• Terrain type: the environment is generated with multiple segments of five terrain
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types that are categorized as: flat surfaces, pits, hills, ascending and descending

stairs. This is a frame-level task.

• Terrain slope: the slope of the surface the robot is walking on. This is a

frame-level task.

• Terrain difficulty: the different terrain segments have different difficulty levels

based on terrain roughness or steepness of the surface. This is a frame-level task.

Why this dataset. Simulation-based data collection enables access to information

that is generally inaccessible or hard to acquire in a real-world setting. Unlike noisy

measurements coming from the camera-based feature extractor in the case of the

mouse dataset, physics engines do not suffer from the problem of noise. Instead, they

provide accurate ground-truth information about the creature and the world state

free of charge. Access to such information is at times critical for scrutinizing the

capabilities of the learning algorithms.

Visualizing differences between short-term and long-term embeddings

In Figure 6.5, we visualize how the short-term and long-term embeddings evolve over

time, for a single sample sequence. We note a clear difference in the smoothness in

the two timescales. In the short-term embeddings, we note a clear block structure

corresponding to different blocks of behavior that span a few seconds, while in the

long-term embeddings the representation is more stable over time. This suggests that,

as expected, the bootstrapping objectives are forming representations with different

levels of granularity.

Figure 6.5: Visualization of the short-term and long-term embeddings. We visualize
for a single sequence how the short-term and long-term embeddings evolve over time.
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6.2.2 Experimental details: Mouse Triplet

Feature extraction

Each mouse in the arena is tracked using 12 anatomically defined keypoints. We

process these keypoints to extract 36 different features characterizing each mouse

individually, similar to [58]. We separate the keypoints into two different areas, the

head and the body, for each we extract different measures of displacement, that we

express in the frame of the mouse, i.e. these features are invariant to the pose of the

mouse relative to the arena. These features include:

• Head linear velocity vector that we express using polar coordinates.

• Head angular velocity denoting the change in the heading direction in the arena.

• Body linear velocity vector that we express using polar coordinates.

• Body angular velocity denoting the change in the direction of the body with

respect to the arena.

• Angular and linear velocities of the fore paws and the hind paws.

• Spine length change, depicting the expansion and contraction of the mouse’s

body.

• Angles formed by the tail with respect to the body.

We normalize all features before training. We also use cosine and sinus of the angles

instead of the angles. During training, we did not use any form of augmentation.

Noise in the data. Because of errors in pose estimation and tracking, there are

sometimes errors in the tracking data, notably some identity swap issues [74]. To

address this, we simply zero out all of the corresponding features and flag the frame

as invalid. A binary feature is also add to the input features indicating whether or
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not the frame is valid. When predicting future actions, we only compute the error

over windows in which at least 80% of the frames are valid.

Difference between Histogram of Actions and previous objectives

Our novel objective consists in predicting the future histogram of actions instead of

predicting the future sequence of actions. In Figure 6.6, we show what the target is

for a sample from the MABe Mouse Triplet dataset. Note that the time dimension is

collapsed, blurring the exact unrolling of the future events, but preserving the set of

values that these actions will sweep. Note that the loss (EMD) is applied for each

action feature.
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Figure 6.6: Prediction target for a sample of the MABe Mouse Triplet dataset.

We show that by relaxing our future prediction loss to a HoA loss, we benefit in

terms of the representations that are learned by the model, especially for sequence-level

(global tasks). Thus, in many ways, we show that directly forecasting, which is what

many previous approaches have used for representation learning, can actually lead

to representations that capture less of the task structure. While the model doesn’t

predict future timesteps directly, we can visualize the histogram prediction for the

model and ground truth (Figure Figure 6.7).
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Training details

Architecture. We use two TCNs [80]. Each TCN is built using multiple residual

blocks, each residual block is composed of two convolutional layers, and use PReLU

activation, dropout and weight normalization. All convolutions are dilated with a rate

r, that increases after each residual block. The formula is ri where i is the index of

the residual block. The first TCN is the short-term encoder, which uses 4 blocks with

output sizes [64, 64, 32, 32] and a dilation rate r = 2. The second TCN is the long-term

encoder, which uses 5 blocks with output size [64, 64, 64, 32, 32] and a dilation rate

r = 4. The output of both encoders are concatenated to form a 64d embedding. The

predictor is a multi-layer perceptron (MLP) that has 4 hidden layers.

Figure 6.7: Visualization of histograms of future actions, for two random action
features. For a timestamp t on the time axis, we show the 32 dimensional histogram
of future actions, which is the target of prediction for BAMS.
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Training. We train the model for 500 epochs using the Adam optimizer with a

learning rate of 10−3 and weight decay 4 · 10−5, we decrease the learning rate to 10−4

after 100 epochs. We use a batch size of 96, and compute the future histogram of

action prediction error for each timestep t starting at 5 seconds after the start of

each sequence, in order to allow the model to aggregate enough context. We set the

learning rate of the predictors used for bootstrapping to be 10 times higher than the

learning rate used for the rest of the weights.

Evaluation. During the development of the model (Figure 6.8), we test our model

on the public test splits, and only look at the performance on the private set after

finishing any hyperparameter tuning. We repeat the training and evaluation 5 times

and report the average performance

freeze 
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Figure 6.8: Linear evaluation protocol. The model is frozen, and for each task, a
single linear layer is trained to predict the corresponding labels.

Additional ablations

In addition to those mentioned in the main text, we perform two additional ablations

to BAMS (Table Table 6.3). In our first experiment, we removed the interaction loss

from the model, meaning that the dynamics of each mouse are modeled completely

independently from each other. The ablated model sees a small drop in performance,

but continues to outperform all other methods on average.
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BAMS in the inductive setting

The mouse triplet dataset (5336 sequences) has three different sets, a training set

(1800 sequences), a private test set and a public test set. During training of the

representation learning model, we can either pre-train on all of the available data

(transductive setting) or on the training set only (inductive setting). During linear

evaluation, the different linear layers are trained using labels from the training set and

the performance is reported on the public test set (during the challenge) and then on

the private test set (to rank models).

We train BAMS in the inductive setting and report the performance in Table 6.3.

We find that even when BAMS is trained with approximately one third of the data,

the drop in performance is modest. More importantly, BAMS preserves its ranking

compared to other methods, and still achieves state-of-the-art performance.

Table 6.3: Linear readouts of mouse behavior. The best-performing models are those
with low MSE scores and high F1-scores.

Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
PCA 0.09416 0.09445 51.60 54.65 0.86 0.14 49.27 37.87 12.71 0.21 0.60 0.53 6.65
TVAE 0.09403 0.09442 52.98 56.80 1.07 0.45 59.33 44.77 21.96 0.27 0.83 0.62 10.20
T-BERT 0.09262 0.09276 78.63 68.84 1.80 0.87 70.22 55.84 30.24 0.51 1.40 1.12 17.27
TS2Vec 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
T-Perceiver 0.09322 0.09323 69.81 69.68 1.57 1.27 60.84 47.81 28.32 0.41 1.16 0.86 16.42
T-GPT 0.09269 0.09384 64.45 65.39 1.73 0.64 69.05 55.78 23.80 0.46 1.12 1.05 17.86
T-PointNet 0.09275 0.09320 66.01 67.15 2.56 4.57 70.68 55.96 21.23 0.84 2.79 2.32 15.61
BAMS - no interaction 0.09164 0.09154 83.47 71.23 2.55 2.03 63.63 50.97 31.15 0.58 1.47 1.37 15.10
BAMS - inductive 0.09112 0.09132 83.44 70.39 2.62 1.40 65.98 52.39 31.08 0.60 1.54 1.40 18.14
BAMS - transductive 0.09094 0.08989 88.23 72.00 2.74 1.89 67.22 53.43 31.43 0.59 1.61 1.57 18.15

Table 6.4: TS2Vec Linear readouts of mouse behavior.

Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
TS2Vec-I 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
TS2Vec-T 0.09882 1.0252 45.82 46.69 0.72 0.14 45.19 34.93 9.38 0.186 0.38 0.38 05.31
TS2Vec-IT 0.09846 1.01646 46.67 44.28 0.67 0.13 44.56 33.87 9.79 0.178 0.42 0.42 04.58

Notes on TS2Vec experiments

TS2Vec [86] employs two types of contrastive losses to learn representations. The first

of these losses is an instance contrastive loss which contrasts a sequence with all other
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sequences in a batch which are treated as negative examples, while two subsequences

extracted from the same sequence are treated as positive examples. The second

loss is a temporal contrastive loss which acts along a single time series. Temporal

representations of nearby time points are taken as positive examples, while the rest

of the time points within the same sequence are taken as negative examples. The

results for the three versions of TS2vec, namely TS2Vec-I, which uses only instance

contrastive loss, TS2Vec-T, which uses only temporal contrastive loss,and TS2Vec IT,

which uses both instance and temporal contrastive losses, are listed in Table 6.4. Our

TS2Vec experiments on the mouse dataset showed that using temporal contrastive

loss resulted in worse performance across all tasks as compared to only using instance

contrastive loss. For this reason, we only report results for TS2vec that only employs

instance contrastive loss.

We note that for both TS2Vec and TS2Vec-IT, we ran into out-of-memory errors

when creating instance-level or global contrast. Contrastive learning methods usually

incur high computational costs, we find that our method, which doesn’t rely on

negative examples, can scale better when working with longer sequences and larger

datasets.

6.3 Learning invariances in neural population activity

6.3.1 Algorithm

6.3.2 Mining: Implementation details

At a given training iteration, for every sample in the batch, we mine for views in the

same pool of candidates of size L. Depending on the type of data, the mining for a

given sample can be restricted to a subset of that pool of candidates.

Image datasets. When training MYOW on images, we use two different dataloaders.

The first is the main dataloader that creates batches of size B, the second dataloader
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Algorithm 1: Mine Your Own vieW - MYOW
Dataset D; online network fθ, gθ, hθ; target network fξ, gξ, hξ; dual

predictors qθ, rθ; learning rate η; momentum τ ; mining weight
λ; batch size B; pool batch size L.
ξ ← θ while not converging do

Augment views Fetch a mini-batch {si}B from D;
for i ∈ {1...B} (in parallel) do

Draw functions: t ∼ T , t′ ∼ T ;
xi = t(si), x′

i = t′(si);
zi = gθ(fθ(xi)); z′i = gξ(fξ(x

′
i));

ui = gξ(fξ(xi)); u′
i = gθ(fθ(x

′
i));

end
Mine views Fetch a mini-batch {cj}L from D;
for j ∈ {1...L} (in parallel) do

Draw function: t ∼ Tm
xc,j = t(cj); y′

c,j = fξ(xc,j);
end
Let S = {y′

c,j}Lj=1;
for i ∈ {1...B} (in parallel) do

Draw function: t ∼ Tm;
xm,i = t(si); ym,i = fθ(xm,i);
Find Nk(ym,i), the k-NNs of ym,i in S;
Randomly select y′

m,i from Nk(ym,i);
vi = hθ (gθ (ym,i)) ;v

′
i = hξ(gξ(y

′
m,i));

end
Update parameters L =

∑
i

d(qθ(zi), z
′
i) + d(qθ(u

′
i),ui) + λd(rθ(vi),v

′
i);

θ ← Optimizerθ,L/B, η;
ξ ← τξ + (1− τ)θ;

end
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Figure 6.9: Visualization of augmentations used for neural activity. Within a small
local window around each anchor sample, we consider the nearby samples (red) to be
potential positive examples. Outside of a safe zone, we can label more distant samples
(blue) as either negative examples (in contrastive learning) or we can also use these
points as candidate views to mine from (in MYOW). Randomized dropout is illustrated
via white bars corresponding to the dropping of the same neurons in all three views.

is independent from the first and is used to sample candidates, and thus has a batch

size of L. When L > B, the second dataloader consumes the dataset before the end

of the training epoch, in this case we simply reset the candidate dataloader as many

times as needed.

Neural datasets. When training MYOW on neural datasets, or temporal datasets

in general, we restrict mining for a given sample to candidates that are temporally

farther in time, as illustrated in Figure 6.9. Implementation-wise, we use a global pool

of candidates of size L for simplicity, then when computing the distance matrix used

to determine the k-nearest neighbors, we mask out the undesired correspondences in

the matrix.

6.3.3 Experimental setup: Image datasets

Notation Let MLP(i, h, o) be a linear layer with input size i and output size h, followed

by batch normalization, rectified linear units (ReLU) and a linear layer of output size

o. Like in [83], we use these multi-layer perceptrons (MLPs) of depth 2 for projectors

and predictors.
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Architecture. We use the CIFAR variant of ResNet-18 as our backbone [111].

The representation y corresponds to the output of the final average pool layer,

which has a feature dimension of 512. We use MLP(512, 4096, 256) for the first

projector gθ and MLP(256, 4096, 256) for its corresponding predictor qθ. For the pair

of projector/predictor (hθ/rθ) dedicated to mined views, we use MLP(256, 4096, 256)

and MLP(256, 4096, 256), respectively.

Class of transformations. During training, we generate augmented views using

the following transformations (T ) [136, 137]:

• Random cropping: Images are resized to 32x32 using bicubic interpolation, with

random area ratio between 0.2 and 1.0, and a random aspect ratio between 3/4

and 4/3.

• Random horizontal flip: the image is fliped left to right with a probability of 0.5.

• Color jittering: the brightness, contrast, saturation, and hue of the image are

randomly changed with strengths of (0.4, 0.4, 0.4, 0.1) with a probability of 0.8.

• Color dropping: the image is converted to gray scale with a probability of 0.1.

When mining, we only use random cropping with a random area ratio between 0.8

and 1.0 to augment views (T ′).

Training. We use the SGD optimizer with a learning rate of 0.03, a momentum

of 0.9 and weight decay of 5 ∗ 10−4. After a linear warmup period of 10 epochs, the

learning rate is decayed following a cosine decay scheduler. The exponential moving

average parameter τ is also decayed from 0.996 to 1. following a cosine decay scheduler.

We train MYOW for 800 epochs and use a batch size of B = 512, as well as a pool batch

size of L = 512, and k = 1. We use a mining weight of λ = 0.1 linearly ramped-up

for 10 epochs. BYOL is trained using the same relevant hyperparameters. In our

experiments, we use the same random seeds for both MYOW and BYOL.

Evaluation Protocol: Following the evaluation procedures described in [111, 83],
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we train a linear classifier on top of the frozen representation of the encoder network

and report the accuracy on the test sets (We use the public train/test split for both

CIFAR datasets). The linear layer is trained without augmentations for 200 epochs,

with an SGD optimizer with a learning rate of 0.4 decayed by a factor of 10 at 140

and 190 epochs.

6.3.4 Experimental details: Neural data

Application 1: Decoding movements from motor cortex

Details on neural and behavioral datasets in movement decoding task.

Neural and behavioral data were collected from two rhesus macaque monkeys (Chewie,

Mihi). Both individuals performed a standard delayed center-out movement paradigm

(reaching experiment). The subjects were seated in a primate chair and grasped a

handle of a custom 2-D planar manipulandum that controlled a computer cursor on a

screen. In the first dataset from Chewie, the individual began each trial by moving

to a 2 x 2 x 2 cm target in the center of the workspace, and was instructed to hold

for 500-1500 ms before another 2 cm target was randomly displayed in one of eight

outer positions regularly spaced at a radial distance of 8 cm. For Mihi, this is followed

by another variable delay period of 500 to 1500 ms to plan the movement before an

auditory ‘Go’ cue. The sessions with Chewie omitted this instructed delay period and

the ‘Go’ cue was provided when the outer target appeared. Both individuals were

required to reach to the target within 1000-1300 ms and hold within it for 500 ms to

receive an auditory success tone and a liquid reward.

Both individuals were surgically implanted a 100- electrode array (Blackrock

Microsystems, Salt Lake City) in their primary motor cortex (M1). To record the

spiking activity of single neural units, threshold crossings of six times the root-mean

square (RMS) noise on each of the 96 recording channels are initially recorded. After

each session, the neural waveform data was sorted using Offline Sorter (Plexon, Inc,
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Dallas, TX) to identify single neurons and discarded all waveforms believed to be

multi-unit activity.

Data is only recorded when the primate is performing the reaching task, we note

such instance a "trial". We split the trials time-wise, using a 70/10/20 ratio, to obtain

our training, validation and test sets. The temporal splits gives us a better estimate of

the prospective prediction compared to a random split [160]. The activity of individual

neurons was binned (100 ms intervals) to produce firing rates for roughly 150 neurons

across two days.

Class of transformations. During training, we generate augmented views and

mined views using the following transformations (T = T ′):

• Temporal Jitter: a sample within 200ms is used as a positive example.

• Dropout: mask out neurons with a probability uniformly sampled between 0.

and 0.2.

• Noise: add gaussian noise with standard deviation of 1.5, with a probability of

0.5.

• Pepper or Sparse additive noise: increase the firing rate of a neuron by a 1.5

constant with a probability of 0.3. This augmentation is applied on the sample

with a probability of 0.5.

Because these datasets correspond to a collection of trials, we restrict mining to

candidates that are in different trials from the anchor sample.

Network Architecture. For the encoder, we use an MLP which is 4 blocks deep.

Each block consists of a linear layer with output size 64 followed by batch normalization

(BN) and rectified linear units (ReLU). The final layer has an output size of 32 and

no BN or activation. We don’t use projectors, predictor qθ used for augmented views

is MLP(32, 128, 32), and predictor rθ used for mined views is MLP(32, 128, 32).

Training. We use the AdamW optimizer with a learning rate of 0.02 and weight
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decay of 2 ∗ 10−5. After a linear warmup period of 100 epochs, the learning rate is

decayed following a cosine decay scheduler. The exponential moving average parameter

τ is also decayed from 0.98 to 1. following a cosine decay scheduler. We train MYOW for

1000 epochs and use a batch size of B = 512, as well as a pool batch size of L = 1024,

and k = 5. We use a mining weight of λ = 1. linearly ramped-up for 10 epochs. BYOL

is trained using the same relevant hyperparameters.

Reach direction prediction task. The downstream task we use to evaluate

the learned representation, is the prediction of the reach direction during movement.

There are 8 possible reach direction in total. Unlike most classification tasks, there is

an inherent cyclic ordering between the different classes. Thus, we estimate the angles

corresponding to each reach direction, and evaluate their cosine and sine. The linear

layer outputs a 2d vector [x, y] that predicts [cos θr, sin θr]. We train the network using

a mean-squared error loss. Once the network is trained, to readout out the predicted

reach direction label, we use the following formula:

lpredicted = ⌊ 4
π
(atan2(y, x) mod 2π)⌉ (6.1)

Evaluation Procedure. We train a linear classifier on top of the frozen represen-

tation of the encoder network and report the accuracy on the test sets. The linear

layer is trained for 100 epochs using the AdamW optimizer with a learning rate of

0.01. We sweep over 20 values of the weight decay {210, 28, 26, . . . , 26, 28, 210} on the

valudation set, and report the accuracies of the best validation hyperparameter on

the test set.

More specifically, we report two different metrics that are computed over the

validation set. The Accuracy is the conventional classification accuracy that is

obtained when assigning the predicted reach angle to the closest corresponding reach

direction. The second metric, , is obtained when considering that a prediction is a

true positive if it is within a slightly larger window around the true reach direction
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(an analogy to top-k metrics). (Fig Figure 6.10-b).

TPAcc = |
4

π
(atan2(y, x) mod 2π)− l| < 1 TPδ−Acc = |

4

π
(atan2(y, x) mod 2π)− l| < 1.5

(a) (b)

Figure 6.10: Reach direction prediction task. (a) Sketch of primate performing reaching
task. (b) Illustration depicting how the accuracy and δ-accuracy are computed. The
three points have reach direction 1 as their ground truth. TP is true positive and FN
is false negative. The highlighted areas correspond to the area a point should fall in
to be considered a true positive and be counted towards the corresponding accuracy.

Application 2: Decoding sleep states from rodent cortex

Details on neural and behavioral datasets in arousal state decoding. Extra-

cellular single unit spiking was collected from chronically implanted, freely behaving

animals. Tetrode arrays were implanted without drives into mouse CA1 (C57BL/6)

and rat V1 (Long Evans). Following recovery, neural data were recorded at 25 kHz con-

tinuously during free behavior. Raw data were processed and clustered using standard

pipelines. Data was bandpassed (500-10,000 Hz) and clustered using MountainSort

[161, 162]. Single units were identified in the clustering output via XGBoost.

Arousal state was scored using standard polysomnographic methods. Local field

potentials (LFP) from 8/64 channels were averaged together, lowpassed (250 Hz), and

downsampled. Video (15 fps) was processed using a CNN [98] to track animal position

and movement. Trained human scorers evaluated the LFP power spectral density and

integral of animal movement to evaluate waking, NREM and REM sleep.
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We split the 12 hour block of data temporally using an 70/10/20 ratio, to obtain

our training, validation and test sets. The activity of individual neurons was binned

(4s intervals) to produce firing rates for roughly 40 and 120 neurons from CA1 and

V1, respectively.

Training. We use the same hyperparameters as for the monkey datasets, except

that the representation size is larger (64), and the temporal augmentations are different.

With temporal jitter, we consider any two samples that are at most 12s apart to be

positive examples and when mining we restrict the candidates to be at least 30min

before or after the anchor sample.

Arousal state prediction task. We train a linear classifier on top of the frozen

representation of the encoder network to predict the arousal state.

6.3.5 Is MYOW worth the extra computational load?

In one iteration, MYOW receives 3 batches worth of views, compared to 2 for BYOL.

Thus, there is a possibility that MYOW performs better than BYOL simply because of

the higher effective batch size used during training. To rule this possibility out, we

try both training BYOL for 50% more epochs and training BYOL using a 50% bigger

batch size, and report the results in Table 6.5. We show that the improvements we

find through with MYOW go beyond extra training time.

Table 6.5: Training BYOL with adjusted batch size and number of epochs. We report
the linear evaluation accuracies on CIFAR-10 using ResNet-18.

Batch size Number of epochs Accuracy
BYOL 512 800 91.71
BYOL 512 1200 91.75
BYOL 768 800 91.65
MYOW 512 800 92.10

When we examine the accuracy curves during training (Figure 6.11), we find that

MYOW surpasses the final accuracy of BYOL after only 300 epochs of training. Thus, in
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the case of this dataset, we can justify the extra computational load that comes with

using MYOW, as it yields better results early on in training.

Figure 6.11: Accuracy under linear evaluation, CIFAR10, ResNet18. BYOL (bottom),
MYOW (top).

6.3.6 What makes for good mined views?

In Table 6.6, we compare the outcomes of using the online representations of the

candidates compared to their target representations when looking for the k-nn of the

online representation of the anchor sample. We find that both strategies yield similar

results while mining in the target is less computationally expensive.

Table 6.6: Mining in online versus. target space. We report the linear evaluation
accuracies on CIFAR-10 using ResNet-18, as well as an approximation of the compu-
tational load factor with BYOL as the baseline.

Mining in Computational factor Accuracy
BYOL - 1.00 91.71
MYOW online 1.75 92.13
MYOW target 1.50 92.10

We analyse the views that are being mined when training MYOW on CIFAR-10. In

Figure 6.12, we show a random collection of views paired during mining.

MYOW relies on mining views that are semantically similar, but it is not clear how

robust MYOW is to “bad” mined views. While we are not able to give a definitive answer
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Figure 6.12: Examples of views mined by MYOW. We visualize the views mined by MYOW
during training on the CIFAR-10 dataset at epoch 400.
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to this question, we find that even when certain mined views have a different class

from the anchor samples, MYOW still yields competitive results. In Figure 6.13, we look

at the mining class accuracy, defined as the percentage of mined views that share

the same class as their anchor samples, and find that the accuracy steadily increases

during training and that the relatively low accuracy at the beginning of training does

not hinder the performance of MYOW. The mining class accuracy gives us a better

understanding of the mining, but it is not a reflection of the goodness of the mining,

as we do not know what makes for a good mined view and whether a inter-class mined

views could be “good”. We also visualize, in Figure 6.14, the mining class confusion

matrices at epochs 100 and 700 of training.

Figure 6.13: Mining class accuracy during training. This metric is reported on CIFAR-
10 using ResNet-18.

6.3.7 Ablation on the projector

In Table 6.7 and Table 6.8, we report the results of MYOW on the MNIST and CIFAR-

10 datasets for different architectures used for incorporating mined views into our

objective: cascaded projectors (used in MYOW), parallel projectors and single projector

For MNIST, we show the results for two different settings, weak augmentation (Crop

only) and strong augmentation (All). Overall, we find that separating the projection
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Figure 6.14: Mining class confusion matrices at different stages of learning. We
compute the confusion matrix at epochs 100 (right) and (700) when training on
CIFAR-10.

Table 6.7: Comparing different projector architectures for incorporating mined views.
MNIST classification accuracy (in %) with MYOW for different architectures.

Arch Dimension MNIST
Crop only All

Cascaded 16 99.20 99.33
Cascaded 128 98.09 98.80
Parallel 16 96.33 98.71
Parallel 128 97.75 98.12
Single 16 97.13 97.48
Single 128 98.75 98.31

spaces for augmented and mined views is better, with the cascading yielding the best

results.

6.3.8 Ablation on the class of transformations

We study how the choice of the set of transformations used in the mining process,

impacts the quality of the representation. In Table 6.9, we report the accuracies under

linear evaluation when we use different classes of transformation T ′.
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Table 6.8: Comparing different projector architectures for incorporating mined views.
CIFAR-10 classification accuracy (in %) with MYOW for different architectures.

Arch CIFAR-10
Cascaded projectors 92.10
Parallel projectors 92.01
Single projector 91.84

Table 6.9: Class of transformations for mined views. We report the accuracies under
linear evaluation of MYOW trained on CIFAR-10 using ResNet-18, for different classes
of transformation T ′

Crop Flip Color jitter CIFAR-10
✓(0.2− 1.0) ✓ ✓ 91.63
✓(0.8− 1.0) 92.10

92.08

6.3.9 Gaining insights into across-sample prediction

Based upon our experiments on neural data, we conjectured that the diversity intro-

duced by MYOW makes it possible to learn effectively, even when the augmentations

provided to the network are too local to drive learning in BYOL. We thus designed an

experiment using the dSprites dataset [163], as it allows control over the generation of

data over multiple latent positions.

The dSprites dataset is comprised of a total of 737,280 images. Each image has

an associated shape, orientation, scale and 2D position. Each one of these latent

variables has a finite number of possible values because of the procedural nature of

the dataset. To generate the downsampled training sets used in our experiment, we

uniformly sample 50% of the orientation latent values as well as 50% of the scale

latent values, and only consider the corresponding images, thus effectively creating

holes in the latent manifold. The dataset is further downsampled at a given rate r to

generate the train set, the remaining images form the test set. The size of the train

set is effectively 0.25 ∗ r that of the entire dataset. In our experiment, we generate

training sets that are 30%, 15% and 7.5% the size of the dataset.
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When we train BYOL and MYOW on a sufficiently dense sampling of the latent positions

(30%), we observe that both models can classify on unseen latent positions with nearly

100% accuracy (Figure 6.15). However, when we consider the undersampled condition

(7.5%), BYOL fails to generalize to the unseen positions, resulting in a low accuracy of

around 60%. In contrast, MYOW maintains a high accuracy of 94% despite the limited

training data. These findings suggest that in settings where the data manifold is

sparsely sampled, MYOW provides a way to build predictions across different but similar

data samples.

Figure 6.15: Understanding predictive learning when augmentations are too local.
Each segment represents a pair of views (red for augmented, blue for mined) of the
corresponding latent scale (x-axis). The vertical lines represent the original scales of
samples pre-augmentation. We examine the case where we have access to the full
dataset (left) and when we have only half of the latent positions (3/6) and 7.5% of
the remaining samples (right).

6.3.10 Augmentations for spiking neural data

Temporal jitter. As in previous work in temporal contrastive learning [127, 153,

154, 155, 156], we can use nearby samples as positive examples for one another.

Randomized dropout. When working with neural data, we consider randomized

dropout [164] as an augmentation. The dropout rate is uniformly sampled between

pmin and pmax.

Gaussian noise. Random Gaussian noise with mean 0 and standard deviation

1.5 is applied before normalizing the firing rates.

Random pepper. In contrast to dropout, applying random pepper consists of
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Table 6.11: How augmentations impact our ability to decode sleep and
wake states accurately. To understand how different augmentations
impact the representations obtained with BYOL and MYOW for the two
datasets labeled Sleep, we computed the F1-score for different classes
of augmentations in two brain areas.

TS RDrop F1-score
Rat-V1 Mouse-CA1

BYOL ✓ 68.66 87.73
✓ 79.31 88.84

✓ ✓ 85.42 93.24
MYOW ✓ 72.13 90.01

✓ 85.60 83.33
✓ ✓ 88.01 93.70

randomly activating neurons. Similar to the dropout probability, a pepper probability

is used to specify the probability of activating a neuron. The activation consists in

adding a constant to the firing rate.

In Table 6.10, we show how different augmentations impact neural datasets not

detailed in the main text. The findings are echoed through all monkey datasets.

Table 6.10: How augmentations impact our ability to decode movements accurately.
To understand how different augmentations impact the representations obtained with
BYOL and MYOW for all four datasets, we computed the Accuracy in our reach direction
prediction task when we apply a given set of transformations.

TJ Drop Noise Pepper Accuracy
Chewie-1 Chewie-2 Mihi-1 Mihi-2

BYOL ✓ 41.75 40.83 43.98 44.10
✓ ✓ ✓ 55.70 49.37 47.61 43.12

✓ ✓ 61.39 56.48 59.53 58.37
✓ ✓ ✓ ✓ 63.80 57.17 59.50 60.82

MYOW ✓ 46.61 42.91 42.08 44.13
✓ ✓ ✓ 53.15 46.17 51.44 48.72

✓ ✓ 67.97 58.21 68.93 63.90
✓ ✓ ✓ ✓ 70.41 60.95 70.48 64.35

In Table 6.11, we show the impact of both temporal shift and dropout on the

performance on rodent datasets. Here, we also find that both components are important

to achieving good performance.
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6.3.11 Visualization of the latent neural space

In Figure 6.16, we provide the visualizations of the latent spaces for all four monkey

reach dataset and can identify a common pattern in the structure uncovered by the

different methods.

Figure 6.16: Visualization of the learned representation. Using t-SNE, we visualize
the representation spaces when training MYOW, BYOL and SimCLR on all four monkey
reach datasets.
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