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Motivation Method
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:I'he dhEtIeICtlo'n of cha:(nges points in neural activity 1. Select a window before and a window after a sample of interest. E;E S a learned metric).
's a challenging task: , , , 2. Compute the Sinkhorn divergence between the two distributions. S Y| = . We report the AUC of chanae point detection
+ Induced by diverse beahvioral switches, which 3. A Change Point is detected if the divergence is greater than aset = > Y S P =P '
can occur at different rates and im - | J 7 7 e inkDi inkDi
pact the popula threshold % { { { —J % ~ SinkDiv  SinkDivLM
tion of neurons differently. S (xt Xt Time Trained on sleep/wake
- during free behavior, it is hard to identify change Extension Lo(Xp Xp) > 7 Sleep/wake 0.58 0.85
points. Learn a metric, for the Sinkhorn divergence computation, that helps to better detect task-relevant change points. REM/nREM/wake 0.79 0.72
Trained on REM/nREM
' ' : : : REM/nREM 92 .
Detect a spec.lﬁc Learn WhICh neurons 1. Select two windows that are both to the right or to the left of the change point: X;and X°. 3 09 0-95
? REM/nREM/wake 0.79 0.82
type of behavioral H and S|g.nals are 2. Select a window that is on the opposite side: X?. : :
switch responsible for it ’ Combined sleep metrics

N

3. Learn a sparse metric (L) by minimizing a triplet loss:
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Conclusion

Change Point

Goal: improve the detection of specific behavioral switches (change points).

Approach: To detect change points, use the Sinkhorn divergence with a task-relevant ~'w==-. e
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v Improves change point detection
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