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Motivation
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Behavior unfolds over multiple timescales

seconds 
running, grooming or chasing

hours 
mice are night active 
changes based on time of day

days - ∞ 
age, disease progression 
strain, morphology



Representation Learning: Pull the embeddings of 
neighboring timepoints closer to each other.

Bootstrapping Across Multiple Scales
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Short-term embeddings



Representation Learning: Pull the embeddings of 
neighboring timepoints closer to each other.

Bootstrapping Across Multiple Scales
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Long-term embeddings



Temporal Pyramid Pooling 

Multiple TCNs with different receptive fields: 
- Recent past encoder (sub-sec) 
- Short-term encoder (1sec-10sec) 
- Long-term encoder (minutes - hours)

Architecture
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How to expand receptive 
field:


• Add more layers, go 
deeper (more parameters!)


• Downsample


• Use dilated convolutions!

Receptive field
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• Dilated convolutions are critical in applications that require 
keeping the spatial dimensions of the image.

Dilated/ A trous convolutions
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• Using dilated convolutions —> Quickly expand the receptive 
field

Dilated/ A trous convolutions
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• The output at time t only depends on inputs at time t and 
before

Causal convolutions
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Temporal Pyramid Pooling 

Multiple TCNs with different receptive fields: 
- Recent past encoder (sub-sec) 
- Short-term encoder (1sec-10sec) 
- Long-term encoder (minutes - hours)

Architecture
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Encourage similarity within each timescale!


Pull short-term embeddings from neighboring timepoints 
closer to each other. 
Pull long-term embeddings from the same sequence closer to 
each other.

Learning Objective 1
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• Important components: EMA (online/target) and stop-
gradient


• Alternative: Near-optimal predictor, 
Remove EMA,  
increase the learning rate of the predictor

BYOL: Doubling the encoders 
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Pretext task: Predict future actions in the next (1s) window. 

Learning Objective 2

By training our model to solve these pretext tasks, good 
representations must be learned
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Behavioral representation learning  
from mouse triplets

Dataset: Mouse Triplets (MABe 
2022)


Task: Unsupervised learning 
from tracking data


Evaluation: Linear readout of 13 
sets of labels


- time of day 
- chasing behavior 
- mouse strain
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Experimental setup
We extract 36 features from the keypoint data (head orientation, 
body velocity, joint angles…), and select 6 to be targets for 
future action prediction.


In the a first stage, we process each mouse independently, then 
learn an interaction embedding to capture the mouse-mouse 
interactions.
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Results

Measuring representational quality in each embedding space

Relative decrease in accuracy from baseline (in %)

Linear readouts across 13 subtasks

Measuring representational quality



We collect data from quadruped robots, with different 
morphologies, walking on procedurally generated terrains. 

Simulated Legged Robots Experiment
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Conclusion
• By separating multi-timescale features across different 

spaces, and designing self-supervised tasks that form these 
representation, our model can capture the behavioral 
embeddings that unfold at different rates.


• To understand and analyze behavior, it is critical to capture 
the factors that modulate it at different timescales. 
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Thank you!
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