### Learning Behavior Representations Through Multi-Timescale Bootstrapping

Mehdi Azabou Georgia Institute of Technology

CVPR - MABe Workshop: Jun 20, 2022

#### Motivation

Behavior unfolds over *multiple timescales* 



seconds running, grooming or chasing

#### hours

mice are night active changes based on time of day





days - ∞

age, disease progression strain, morphology

#### **Bootstrapping Across Multiple Scales**

**Representation Learning:** Pull the embeddings of neighboring timepoints closer to each other.



#### **Bootstrapping Across Multiple Scales**

**Representation Learning:** Pull the embeddings of neighboring timepoints closer to each other.



### Architecture

Temporal Pyramid Pooling Module



#### **Temporal Pyramid Pooling**

Multiple TCNs with different <u>receptive fields</u>:

- Recent past encoder (sub-sec)
- Short-term encoder (1sec-10sec)
- Long-term encoder (minutes hours)

### **Receptive field**



How to expand receptive field:

- Add more layers, go deeper (more parameters!)
- Downsample
- Use dilated convolutions!

## **Dilated/ A trous convolutions**



• Dilated convolutions are critical in applications that require keeping the spatial dimensions of the image.

## **Dilated/ A trous convolutions**



Using dilated convolutions —> Quickly expand the receptive field

#### **Causal convolutions**



 The output at time t only depends on inputs at time t and before

### Architecture

Temporal Pyramid Pooling Module



#### **Temporal Pyramid Pooling**

Multiple TCNs with different <u>receptive fields</u>:

- Recent past encoder (sub-sec)
- Short-term encoder (1sec-10sec)
- Long-term encoder (minutes hours)

## Learning Objective 1





Encourage similarity within each timescale!

Pull <u>short-term embeddings</u> from <u>neighboring timepoints</u> closer to each other.

Pull long-term embeddings from the same sequence closer to each other.

## **BYOL: Doubling the encoders**



Figure 2: BYOL's architecture. BYOL minimizes a similarity loss between  $q_{\theta}(z_{\theta})$  and  $sg(z'_{\xi})$ , where  $\theta$  are the trained weights,  $\xi$  are an exponential moving average of  $\theta$  and sg means stop-gradient. At the end of training, everything but  $f_{\theta}$  is discarded, and  $y_{\theta}$  is used as the image representation.

 Important components: EMA (online/target) and stopgradient

|   |                                             | $\lambda$ | Top-1                      |
|---|---------------------------------------------|-----------|----------------------------|
| • | Alternative: Near-optimal predictor,        | 0         | 0.01                       |
|   | Remove EMA,                                 | 1         | 5.5                        |
|   | increase the learning rate of the predictor | 2         | $62.8{\scriptstyle\pm1.5}$ |
|   |                                             | 10        | 66.6                       |
|   |                                             | 20        | $66.3{\pm}0.3$             |
|   |                                             | Baseline  | 72.5                       |

## Learning Objective 2

Pretext task: Predict future actions in the next (1s) window.



By training our model to solve these pretext tasks, good representations must be learned

#### **Behavioral representation learning** from mouse triplets

**Dataset:** Mouse Triplets (MABe 2022)

**Task:** Unsupervised learning from tracking data

**Evaluation:** Linear readout of 13 sets of labels

- time of day
- chasing behavior
- mouse strain







### **Experimental setup**

We extract 36 features from the keypoint data (head orientation, body velocity, joint angles...), and select 6 to be targets for future action prediction.

In the a first stage, we process each mouse independently, then learn an *interaction embedding* to capture the mouse-mouse interactions.





#### Measuring representational quality

Linear readouts across 13 subtasks

|                 |          |         | Sequence-level subtasks |         |       | Frame-level subtasks |      |      |       |       |       |      |      |      |       |
|-----------------|----------|---------|-------------------------|---------|-------|----------------------|------|------|-------|-------|-------|------|------|------|-------|
| Model           | F1-score | MSE     | T1*                     | T2*     | T3    | T13                  | T4   | T5   | T6    | T7    | T8    | Т9   | T10  | T11  | T12   |
| #1              | 30.3     | 0.09296 | 0.09019                 | 0.09523 | 82.20 | 69.40                | 1.90 | 1.24 | 71.62 | 55.52 | 30.20 | 0.40 | 1.63 | 1.10 | 20.45 |
| #2              | 28.3     | 0.09289 | 0.09057                 | 0.09513 | 67.20 | 66.90                | 2.70 | 6.60 | 71.47 | 54.67 | 20.30 | 0.68 | 3.31 | 2.37 | 18.54 |
| # 3 BAMS (Ours) | 28.4     | 0.09298 | 0.09037                 | 0.09513 | 67.10 | 69.50                | 2.16 | 2.31 | 66.42 | 53.28 | 30.18 | 0.45 | 1.65 | 1.14 | 19.14 |
| PCA baseline    | 7.99     | 0.09430 | 0.09415                 | 0.09449 | 33.83 | 4.13                 | 0.00 | 0.00 | 12.69 | 0.08  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |

#### Measuring representational quality in each embedding space



Relative decrease in accuracy from baseline (in %)

#### Simulated Legged Robots Experiment



We collect data from quadruped robots, with different <u>morphologies</u>, walking on procedurally generated <u>terrains</u>.

|                        | F1-score     |            |  |  |  |
|------------------------|--------------|------------|--|--|--|
| Model                  | Terrain type | Robot type |  |  |  |
| Short-term + Long-term | 0.73         | 0.98       |  |  |  |
| Short-term only        | 0.50         | 0.86       |  |  |  |
| Long-term only         | 0.62         | 0.99       |  |  |  |

## Conclusion

- By separating multi-timescale features across different spaces, and designing self-supervised tasks that form these representation, our model can capture the behavioral embeddings that unfold at different rates.
- To understand and analyze behavior, it is critical to capture the factors that modulate it at different timescales.

#### The Team



Michael Mendelson Georgia Tech



Maks Sorokin Georgia Tech



Shantanu Thakoor DeepMind



Nauman Ahad Georgia Tech



Carolina Urzay Georgia Tech



Eva L. Dyer Georgia Tech

# Thank you!